This classic calculus text remains a must-read for all students of introductory mathematical analysis. Clear, rigorous explanations of the mathematics of analytical number theory and calculus cover single-variable calculus, sequences, number series, more. 1921 edition.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This monumental 1995 treatise by the late Professor G. N. Watson wil be indispensable to mathematicians and physicists.
Originally published in 1910 as number twelve in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides an up-to-date version of Du Bois-Reymond's Infinitärcalcül by the celebrated English mathematician G. H. Hardy. This tract will be of value to anyone with an interest in the history of mathematics or the theory of functions.
A classic single-volume textbook, popular for its direct and straightforward approach. Understanding Pure Mathematics starts by filling the gap between GCSE and A Level and builds on this base for candidates taking either single-subject of double-subject A Level.
There can be few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
This well-known text and reference contains an account of those parts of mathematics that are most frequently needed in physics. As a working rule, it includes methods which have applications in at least two branches of physics. The authors have aimed at a high standard of rigour and have not accepted the often-quoted opinion that 'any argument is good enough if it is intended to be used by scientists'. At the same time, they have not attempted to achieve greater generality than is required for the physical applications: this often leads to considerable simplification of the mathematics. Particular attention is also paid to the conditions under which theorems hold. Examples of the practical use of the methods developed are given in the text: these are taken from a wide range of physics, including dynamics, hydrodynamics, elasticity, electromagnetism, heat conduction, wave motion and quantum theory. Exercises accompany each chapter.
A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
Classic calculus text reissued in Cambridge Mathematical Library. Clear, logical with many examples.
An Introduction to the Theory of Numbers by G.H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. This Sixth Edition has been extensively revised and updated to guide today's students through the key milestones and developments in number theory. Updates include a chapter on one of the mostimportant developments in number theory -- modular elliptic curves and their role in the proof of Fermat's Last Theorem -- a foreword by A. Wiles and comprehensively updated end-of-chapter notes detailing the key developments in number theory. Suggestions for further reading are also included for the more avid reader and the clarityof exposition is retained throughout making this textbook highly accessible to undergraduates in mathematics from the first year upwards.
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and exhaustively both the statement and proof of all the standard inequalities of analysis. The authors were well known for their powers of exposition and were able here to make the subject accessible to a wide audience of mathematicians.
G. H. Hardy (1877-1947) ranks among the great mathematicians of the twentieth century. He did essential research in number theory and analysis, held professorships at Cambridge and Oxford, wrote important textbooks as well as the classic A Mathematician's Apology, and famously collaborated with J. E. Littlewood and Srinivasa Ramanujan. Hardy was a colorful character with remarkable expository skills. This book is a feast of G. H. Hardy's writing. There are selections of his mathematical papers, his book reviews, his tributes to departed colleagues. Some articles are serious, whereas others display a wry sense of humor. And there are recollections by those who knew Hardy, along with biographical and mathematical pieces written explicitly for this collection. Fans of Hardy should find much here to like. And for those unfamiliar with his work, The G. H. Hardy Reader provides an introduction to this extraordinary individual.
Review of the original edition: This is an inspiring textbook for students who know the theory of functions of real and complex variables and wish further knowledge of mathematical analysis. There are no problems displayed and labelled ``problems,'' but one who follows all of the arguments and calculations of the text will find use for his ingenuity and pencil. The book deals with interesting and important problems and topics in many fields of mathematical analysis, to an extent very much greater than that indicated by the titles of the chapters. It is, of course, an indispensable handbook for those interested in divergent series. It assembles a considerable part of the theory of divergent series, which has previously existed only in periodical literature. Hardy has greatly simplified and improved many theories, theorems and proofs. In addition, numerous acknowledgements show that the book incorporates many previously unpublished results and improvements of old results, communicated to Hardy by his colleagues and by others interested in the book. --Mathematical Reviews
This book is intended to help students prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Papers). STEP examinations are used by Cambridge colleges as the basis for conditional offers in mathematics and sometimes in other mathematics-related subjects. They are also used by Warwick University, and many other mathematics departments recommend that their applicants practice on past papers to become accustomed to university-style mathematics. Advanced Problems in Mathematics is recommended as preparation for any undergraduate mathematics course, even for students who do not plan to take the Sixth Term Examination Paper. The questions analysed in this book are all based on recent STEP questions selected to address the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions. Each question is followed by a comment and a full solution. The comments direct the reader’s attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anybody interested in advanced mathematics.
Written to match the contents of the Cambridge syllabus. Pure Mathematics 1 corresponds to unit P1. It covers quadratics, functions, coordinate geometry, circular measure, trigonometry, vectors, series, differentiation and integration.
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
For students reading Mathematics, either as part of a general degree or as an ancilliary course for an Honours degree, the subject should be presented in as straightforward a manners as is consistent with a moderate standard of rigour. This course in algebra, co-ordinate geometry and calculus is designed to fulfil these requirements for students at Universities, Polytechnics and Colleges of Technology. The book contains 350 worked examples and 1550 practice examples selected mainly from university examination papers. The practice examples have been carefully graded and some hints are given with the answers so that the book may be used for private study as well as for class work.

Best Books