This book is an outline of the core material in the standard graduate-level real analysis course. It is intended as a resource for students in such a course as well as others who wish to learn or review the subject. On the abstract level, it covers the theory of measure and integration and the basics of point set topology, functional analysis, and the most important types of function spaces. On the more concrete level, it also deals with the applications of these general theories to analysis on Euclidean space: the Lebesgue integral, Hausdorff measure, convolutions, Fourier series and transforms, and distributions. The relevant definitions and major theorems are stated in detail. Proofs, however, are generally presented only as sketches, in such a way that the key ideas are explained but the technical details are omitted. In this way a large amount of material is presented in a concise and readable form.
Die Wissenschaft arbeitet kumulativ. In der Mathematik und in den Naturwissenschaften gibt es keine unvollendeten Sympho nien. über Jahrhunderte hinweg können thematische Problem kreise ihre Dynamik behalten; im historischen Rückblick erschei nen dann lange, zusammenhängende Problemketten von einer faszinierenden Kontinuität des menschlichen Denkens. Es ist die Befriedigung grundlegender materieller und geistiger Bedürfnisse der Menschheit, die dem weitgespannten Bogen zwischen Ver gangenheit und Gegenwart Stabilität verleiht. Zugleich und andererseits liegt hierin der Umstand begründet, daß wissenschaftliche Fragestellungen der Vergangenheit in die Gegenwart und Zukunft hineinwirken können. Gerade die führen den 'Wissenschaftler waren sich der Fruchtbarkeit historischen Selbstverständnisses für ihre eigenen Forschungen bewußt. Die Abhandlungen von LAGRANGE zum Beispiel gehören zu den Kost barkeiten auch der mathematik-historischen Literatur. Und wie wären die Leistungen von EULER und GAUSS, von EINSTEIN und v. LAUE möglich gewesen ohne die von ihnen selbst vorgenommene Einordnung in eine wissenschaftliche Tradition? Auch die durch greifenden Revolutionen in der 'Vissenschaft bedeuten nichts an deres als die dialektische überwindung eines zuvor bestätigten wissenschaftlichen Tatbestandes. In diesem Sinne stellt die hier dargestellte Geschichte der Dio phantischen Analysis geradezu einen klassischen Fall aktueller Geschichte der Mathematik dar. Der historische Bogen spannt sich über mehr als 17 Jahrhunderte, vom Ausgang der Antike bis zum Beginn des 20. Jahrhunderts, ohne daß eine künstliche Reaktivierung der Leistungen von DIOPHANT notwendig geworden wäre. 1* 4 Geleitwort Die Autorin des vorgelegten Büchleins ist eine erfahrene und er folgreiche Historikerin der Mathematik. Frau Prof. Dr. I. G.
This is an informal and accessible introduction to plane algebraic curves that also serves as a natural entry point to algebraic geometry. There is a unifying theme to the book: give curves enough living space and beautiful theorems will follow. This book provides the reader with a solid intuition for the subject, while at the same time keeping the exposition simple and understandable, by introducing abstract concepts with concrete examples and pictures. It can be used as the text for an undergraduate course on plane algebraic curves, or as a companion to algebraic geometry at graduate level. This book is accessible to those with a limited mathematical background. This is because for those outside mathematics there is a growing need for an entre to algebraic geometry, a need created by the ever-expanding role algebraic geometry is playing in areas ranging from biology to chemistry and robotics to cryptology.
Hassler Whitney was a giant of twentieth-century mathematics. This biography paints a picture of him and includes dozens of revealing anecdotes. Mathematically, he had a rare detector that went off whenever he spotted a piece of mathematical gold, and he would then draw countless pictures, gradually forging a path from hunch to proof. This geometric path is seldom reflected in the rigor of his formal papers, but thanks to a close friendship and many conversations over decades, author Kendig was able to see how he actually worked. This book shows this through accessible accounts of his major mathematical contributions, with figures copiously supplied. Whitney is probably best known for introducing the grandfather of today's innumerable embedding theorems--his strong embedding theorem stating that any smooth manifold can be smoothly embedded in a Euclidean space of twice the manifold's dimension. This in turn led to several standard techniques used every day in algebraic topology. Whitney also established the fundamentals of graph theory, the four-color problem, matroids, extending smooth functions, and singularities of smooth functions. He almost never used complicated technical machinery, so most of his work is accessible to a general reader with a modest mathematical background. His math-music connection was intense: He played piano, violin, and viola and won ``best composition of the year'' while earning a Bachelor's degree in music at Yale. He was an accomplished mountain climber, and as a tinkerer, at age sixteen he built the large-format camera used to take this book's cover photograph. Whitney's family generously provided dozens of photographs appearing here for the very first time. This biography is a revealing portrait of a fascinating personality and a titan of twentieth-century mathematics.
Linear algebra occupies a central place in modern mathematics. This book provides a rigorous and thorough development of linear algebra at an advanced level, and is directed at graduate students and professional mathematicians. It approaches linear algebra from an algebraic point of view, but its selection of topics is governed not only for their importance in linear algebra itself, but also for their applications throughout mathematics. Students in algebra, analysis, and topology will find much of interest and use to them, and the careful treatment and breadth of subject matter will make this book a valuable reference for mathematicians throughout their professional lives. Topics treated in this book include: vector spaces and linear transformations; dimension counting and applications; representation of linear transformations by matrices; duality; determinants and their uses; rational and especially Jordan canonical form; bilinear forms; inner product spaces; normal linear transformations and the spectral theorem; and an introduction to matrix groups as Lie groups. The book treats vector spaces in full generality, though it concentrates on the finite dimensional case. Also, it treats vector spaces over arbitrary fields, specializing to algebraically closed fields or to the fields of real and complex numbers as necessary.
A concise guide to the core material in a graduate level real analysis course.
A concise guide to the core material in a graduate level real analysis course.
A Guide to Real Variables is an aid and conceptual support for students taking an undergraduate course on real analysis. It focuses on concepts, results, examples and illustrative figures, rather than the details of proofs, in order to remain a concise guide which students can dip into. The core topics of a first real analysis course are covered, including sequences, series, modes of convergence, the derivative, the integral and metric spaces. The next book in this series, Folland's A Guide to Advanced Real Analysis is designed to naturally follow on from this book, and introduce students to graduate level real analysis. Together these books provide a concise guide to the subject at all levels, ideal for student preparation for exams.
This Guide offers a concise overview of the theory of groups, rings, and fields at the graduate level, emphasizing those aspects that are useful in other parts of mathematics. It focuses on the main ideas and how they hang together. It will be useful to both students and professionals. In addition to the standard material on groups, rings, modules, fields, and Galois theory, the book includes discussions of other important topics that are often omitted in the standard graduate course, including linear groups, group representations, the structure of Artinian rings, projective, injective and flat modules, Dedekind domains, and central simple algebras. All of the important theorems are discussed, without proofs but often with a discussion of the intuitive ideas behind those proofs. Those looking for a way to review and refresh their basic algebra will benefit from reading this Guide, and it will also serve as a ready reference for mathematicians who make use of algebra in their work.
Man kann Gruppen als algebraische Objekte auffassen, die die Symmetrie von geometrischen Objekten beschreiben. Dieser Blickwinkel steht bei dem Buch im Vordergrund und somit geht es in dem Buch auch um Geometrie. Gruppen drücken Symmetriephänomene algebraisch aus, man rechnet mit Spiegelungen, Drehungen usw., allgemein mit Abbildungen von Räumen auf sich. Das Buch kann vorlesungsbegleitend bei Algebra- und Gruppentheorie-Vorlesungen eingesetzt werden. Es eignet sich auch besonders gut für Lehramtsstudierende, da es den Stoff computerorientiert (unter Benutzung des frei erhältlichen Gruppentheorie-Programms GAP) mit vielen anschaulichen Beispielen präsentiert.
This book is a quick but precise and careful introduction to the subject of functional analysis. It covers the basic topics that can be found in a basic graduate analysis text. But it also covers more sophisticated topics such as spectral theory, convexity, and fixed-point theorems. A special feature of the book is that it contains a great many examples and even some applications. It concludes with a statement and proof of Lomonosov's dramatic result about invariant subspaces.
Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.
The only text available on graph theory at the freshman/sophomore level, it covers properties of graphs, presents numerous algorithms, and describes actual applications to chemistry, genetics, music, linguistics, control theory and the social sciences. Illustrated.

Best Books