This is a calculus-based textbook on general physics. It contains all the major subjects covered in an intermediate or advanced course on general physics. It also embraces the most recent developments in science and technology. With this book, students can have a better understanding of physics principles and a broad view on the applications of physics ideas. Through coherent and humorous elucidation of physics principles, this book makes learning general physics a fun and interesting activity. Request Inspection Copy
This book is the solution manual to the textbook "A Modern Course in University Physics". It contains solutions to all the problems in the aforementioned textbook. This solution manual is a good companion to the textbook. In this solution manual, we work out every problem carefully and in detail. With this solution manual used in conjunction with the textbook, the reader can understand and grasp the physics ideas more quickly and deeply. Some of the problems are not purely exercises; they contain extension of the materials covered in the textbook. Some of the problems contain problem-solving techniques that are not covered in the textbook. Request Inspection Copy
"This is a calculus-based textbook on general physics. It contains all the major subjects covered in an intermediate or advanced course on general physics. It aims at the middle to advanced level in general physics. It also embraces the most recent developments in science and technology. Studying general physics with this book, students can have a better understanding of physics principles and a broad view on the applications of physics ideas. Through coherent and humorous elucidation of physics principles, this book tries to make learning general physics a fun and interesting activity"--Page 4 of the cover.
A complete basic undergraduate course in modern optics for students in physics, technology, and engineering. The first half deals with classical physical optics; the second, quantum nature of light. Solutions.
This first-year, graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available to professors
"Featuring more than five hundred questions with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Honors in physics essentials."--Page 4 of cover.
A Modern Course in Statistical Physics is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological systems and batteries, adsorption processes in biological systems, diamagnetism, the theory of Bose-Einstein condensation, memory effects in Brownian motion, the hydrodynamics of binary mixtures. A set of exercises and problems is to be found at the end of each chapter and, in addition, solutions to a subset of the problems is provided. The appendices cover Exact Differentials, Ergodicity, Number Representation, Scattering Theory, and also a short course on Probability.
This book provides a practical approach to consolidate one's acquired knowledge or to learn new concepts in solid state physics through solving problems. It contains 300 problems on various subjects of solid state physics. The problems in this book can be used as homework assignments in an introductory or advanced course on solid state physics for undergraduate or graduate students. It can also serve as a desirable reference book to solve typical problems and grasp mathematical techniques in solid state physics. In practice, it is more fascinating and rewarding to learn a new idea or technique through solving challenging problems rather than through reading only. In this aspect, this book is not a plain collection of problems but it presents a large number of problem-solving ideas and procedures, some of which are valuable to practitioners in condensed matter physics.
Essentials of Modern Physics Applied to the Study of the Infrared covers topics about the essentials of modern physics. The book starts with the situation of research into the infrared and the problems to which it gives rise, and then discusses instrumentation in the infrared: optics, sources, receivers and electronics. The book describes the interaction between the infrared and matter within the framework of Lorentz's general theory and in the particular case of solids using Born's theory and introducing the notion of phonons. The region of the electromagnetic spectrum and the developments in science and industry, including X-ray analysis, molecular beam experiments, radio, and television are considered. The book tackles the sources of infrared as well as infrared detectors. The text will be useful to physicists, engineers, and laboratory technicians.
This first-year, graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available to professors
This thorough and self-contained introduction to modern optics covers, in full, the three components: ray optics, wave optics and quantum optics. Examples of modern applications in the current century are used extensively.
This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled “A modern course in the quantum theory of solids”. The use of the adjective “modern” in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.
Thermodynamics has benefited from nearly 100 years of parallel development with quantum mechanics. As a result, thermal physics has been considerably enriched in concepts, technique and purpose, and now has a dominant role in the developments of physics, chemistry and biology. This unique book explores the meaning and application of these developments using quantum theory as the starting point. The book links thermal physics and quantum mechanics in a natural way. Concepts are combined with interesting examples, and entire chapters are dedicated to applying the principles to familiar, practical and unusual situations. Together with end-of-chapter exercises, this book gives advanced undergraduate and graduate students a modern perception and appreciation for this remarkable subject.
This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. 1969 edition.
An up-to-date perspective on laser technology for students at advanced undergraduate or introductory graduate level. The principles of operation and applications of modern laser systems are analysed in detail. The text has over 300 diagrams and each chapter is accompanied with questions (solutions available on application).

Best Books