Now in its Fourth Edition, An Introduction to Medical Statistics continues to be a "must-have" textbook for anyone who needs a clear logical guide to the subject. Written in an easy-to-understand style and packed with real life examples, the text clearly explains the statistical principlesused in the medical literature. Taking readers through the common statistical methods seen in published research and guidelines, the text focuses on how to interpret and analyse statistics for clinical practice. Using extracts from real studies, the author illustrates how data can be employed correctly and incorrectly in medicalresearch helping readers to evaluate the statistics they encounter and appropriately implement findings in clinical practice. End of chapter exercises, case studies and multiple choice questions help readers to apply their learning and develop their own interpretative skills. This thoroughly revised edition includes new chapters on meta-analysis, missing data, and survival analysis.
"Statistiken sind merkwürdige Dinge ...", dies wird so mancher Mediziner denken, wenn er sich mit der Biometrie befaßt. Sei es im Rahmen seiner Ausbildung oder im Zuge wissenschaftlicher oder klinischer Studien, Kenntnisse der Statistik und Mathematik sind unentbehrlich für die tägliche Arbeit des Mediziners. Ziel dieses Lehrbuches ist es, den Mediziner systematisch an biometrische Terminologie und Arbeitsmethoden heranzuführen, um ihn schließlich mit den Grundlagen der Wahrscheinlichkeitsrechung vertraut zu machen. Nach der Lektüre dieses Buches hält der Leser ein Werkzeug in den Händen, das ihm bei der Lösung medizinscher Fragestellungen hilft ebenso wie bei der Beschreibung von Ergebnissen wissenschaftlicher Studien und natürlich bei der Doktorarbeit!
Der Erste Weltkrieg geht zu Ende, und eine weitere Katastrophe fordert viele Millionen Tote: die Spanische Grippe. Binnen weniger Wochen erkrankt ein Drittel der Weltbevölkerung. Trotzdem sind die Auswirkungen auf Gesellschaft, Politik und Kultur weitgehend unbekannt. Ob in Europa, Asien oder Afrika, an vielen Orten brachte die Grippe die Machtverhältnisse ins Wanken, womöglich beeinflusste sie die Verhandlung des Versailler Vertrags und verursachte Modernisierungsbewegungen. Anhand von Schicksalen auf der ganzen Welt öffnet Laura Spinney das Panorama dieser Epoche. Sie füllt eine klaffende Lücke in der Geschichtsschreibung und erlaubt einen völlig neuen Blick auf das Schicksalsjahr 1918.
Paleo – der Megatrend aus den USA! Steinzeitmenschen waren nicht dick. Warum? Sie aßen hauptsächlich Fisch, Fleisch und Gemüse. Das können sie auch: schnell und unkompliziert Abnehmen mit der Paleo-Diät, basierend auf einer naturbelassenen, weizen- und glutenfreien Ernährung. Die Rezepte – von kreativen Frühstücksideen, einfachen Blitzgerichten bis zu verführerischen Desserts – machen richtig Lust, sofort loszulegen!
Since the last edition of this book was published, major developments in computer technology have affected both the practice of medicine and the methods of analyzing medical data. These advances make the focus of this revised edition - understanding many of the statistical methods that are used in modern medical studies-all the more important. Two new chapters have been added by the authors. One provides readers with an introduction to the analysis of longitudinal data. The other augments previous material concerning the design of clinical trials, exploring topics such as the use of surrogate markers, multiple outcomes, equivalence trials, and the planning of efficacy-toxicity studies. In addition to providing new information and fine-tuning the rest of the book, the authors have reorganized the final six chapters so that the topics build, naturally, on each other. This latest edition is highly recommended both as an excellent introduction to medical statistics and as a valuable tool in explaining the more complex statistical methods and techniques used today.
This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.
The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch. The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field. Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research. Contents:Statistics in Medicine and Epidemiology:History of Statistical Thinking in Medicine (Tar Timothy Chen)Describing Data, Modeling Variation, and Statistical Practice (Hongyan Du and Ming T Tan)Covariate-Specific and Covariate-Adjusted Predictive Values of Prognostic Biomarkers with Survival Outcome (Yunbei Ma, Xiao-Hua Zhou and Kwun Chuen (Gary) Chan)Statistical Methods for Personalized Medicine (Lu Tian and Xiaoguang Zhao)Statistics Used in Quality Control, Quality Assurance, and Quality Improvement in Radiological Studies (Ying Lu and Shoujun Zhao)Applications of Statistical Methods in Medical Imaging (Jesse S Jin)Cost-Effectiveness Analysis and Evidence-Based Medicine (Jianli Li)Quality of Life: Issues Concerning Assessment and Analysis (Jiqian Fang and Yuantao Hao)Meta-Analysis (Xuyu Zhou, Jiqian Fang, Chuanhua Yu, Zongli Xu, Lu Tian, and Ying Lu)Statistical Models and Methods in Infectious Diseases (Hulin Wu and Shoujun Zhao)Special Models for Sampling Survey (Sujuan Gao)The Use of Capture–Recapture Methodology in Epidemiological Surveillance and Ecological Surveys (Anne Chao, T C Hsieh and Hsin-Chou Yang)Statistical Methods in the Effective Evaluation of Mass Screening for Diseases (Qing Liu)Statistics in Clinical Trials:Statistics in Biopharmaceutical Research and Development (Shein-Chung Chow and Annpey Pong)Statistics in Pharmacology and Pre-Clinical Studies (Tze Leung Lai, Mei-Chiung Shin and Guangrui Zhu)Statistics in Toxicology (James J Chen)Dose-Response Modeling and Benchmark Doses in Health Risk Assessment (Yiliang Zhu)Some Fundamental Statistical Issues and Methodologies in Confirmatory Trials (George Y H Chi, Haiyan Xu and Qing Liu)Surrogates for Qualitative Evaluation of Treatment Effects (Zhi Geng)Adaptive Trial Design in Clinical Research (Annpey Pong and Shein-Chung Chow)Statistics in the Research of Traditional Chinese Medicine (Danhui Yi and Yang Li)Statistical Genetics:Sparse Segment Identifications with Applications to DNA Copy Number Variation Analysis (X Jessie Jeng, T Tony Cai and Hongzhe Li)Statistical Methods for Design and Analysis of Linkage Studies (Qizhai Li, Hong Qin, Zhaohai Li, and Gang Zheng)Transcriptome Analysis Using Next-Generation Sequencing (Jingyi Jessica Li, Haiyan Huang, Minping Qian and Xuegong Zhang)Genetic Structure of Human Population (Hua Tang and Kun Tang)Data Integration Methods in Genome Wide Association Studies (Ning Sun and Hongyu Zhao)Causal Inference (Zhi Geng)General Methods:Survival Analysis (D Y Lin)Nonparametric Regression Models for the Analysis of Longitudinal Data (Colin O Wu, Xin Tian, Kai F Yu, and Mi-Xia Wu)Local Modeling: Density Estimation and Nonparametric Regression (Jianqing Fan and Runze Li)Statistical Methods for Dependent Data (Feng Chen)Bayesian Methods (Ming-Hui Chen and Keying Ye)Valid Prior-Free Probabilistic Inference and Its Applications in Medical Statistics (Duncan Ermini Leaf, Hyokun Yun, and Chuanhai Liu)Stochastic Processes and Their Applications in Medical Science (Caixia Li and Jiqian Fang)Interpolation of Missing Values and Adjustment of Moving Holiday Effect in Time Series (Zhang Jin-Xin, Zhang Xi, Xue Yun-Lian, Li Ji-Bin and Huang Bo)Tree-based Methods (Heping Zhang)Introduction to Artificial Neural Networks (Xia Jielai, Jiang Hongwei, and Tang Qiyi) Readership: Biostatisticians, applied statisticians, medical researchers and clinicians, biopharmaceutical researchers, public health epidemiologists, biometricians and applied mathematicians. Key Features: The book covers very broad topics in medical statistics The book covers both most recent developments as well as classical work of the selected areas The book chapter is written by the experts in the field and illustrated with real life examplesKeywords:Medicine;Statistics;Epidemiology;Genomics;Clinical Trials;Bioinformatics;Machine Learning;Statistical Theory;Public HealthReviews: Review of the First Edition: “Overall the book covers a wide variety of applications. Each method is presented in sufficient depth to allow the reader to understand when the method(s) can be used … this book would be a useful resource for any practitioner in medical research.” Statistical Methods in Medical Research
Theorien verstehen und Techniken anwenden Was haben die Gehälter von Spitzensportlern und der Mindestlohn gemeinsam? Richtig, man kann sie mit Ökonometrie erforschen. Im Buch steht, wie es geht. Und nicht nur dafür, sondern für viele weitere Gebiete lohnt es sich, der zunächst etwas trocken und sperrig anmutenden Materie eine Chance zu geben. Lernen Sie von den Autoren, wie Sie spannende Fragen formulieren, passende Variablen festlegen, treffsichere Modelle entwerfen und Ihre Aussagen auf Herz und Nieren prüfen. Werden Sie sicher im Umgang mit Hypothesentests, Regressionsmodellen, Logit- & Probit-Modellen und allen weiteren gängigen Methoden der Ökonometrie. So begleitet Ökonometrie für Dummies Sie Schritt für Schritt und mit vielen Beispielen samt R Output durch dieses spannende Thema.
Das Buch bietet eine integrierte Darstellung der deskriptiven Statistik, moderner Methoden der explorativen Datenanalyse und der induktiven Statistik, einschließlich der Regressions- und Varianzanalyse. Die Darstellung ist auf inhaltliche Motivation, Interpretation und Verständnis der Methoden ausgerichtet. Zahlreiche Beispiele mit realen Daten und Graphiken veranschaulichen den Text. Texthervorhebungen zentraler Aspekte und Stichwörter am Rand erhöhen die Lesbarkeit und Übersichtlichkeit. Das Buch eignet sich als vorlesungsbegleitender Text, aber auch zum Selbststudium für Studenten aus den Bereichen der Wirtschafts- und Sozialwissenschaften, anderen Anwendungsdisziplinen der Statistik sowie als Einführungstext für Studenten der Statistik.
A biostatistics text which is also motivated by clinical problems. It is written in reponse to the increasing number of medical schools moving over to a problem-based curriculum in which clinical skills and basic science are learnt in an integrated manner.
The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings.
All new medicines and devices undergo early phase trials to assess, interpret and better understand their efficacy, tolerability and safety. An Introduction to Statistics in Early Phase Trials describes the practical design and analysis of these important early phase clinical trials and provides the crucial statistical basis for their interpretation. It clearly and concisely provides an overview of the most common types of trials undertaken in early phase clinical research and explains the different methodologies used. The impact of statistical technologies on clinical development and the statistical and methodological basis for making clinical and investment decisions are also explained. Conveys key ideas in a concise manner understandable by non-statisticians Explains how to optimise designs in a constrained or fixed resource setting Discusses decision making criteria at the end of Phase II trials Highlights practical day-to-day issues and reporting of early phase trials An Introduction to Statistics in Early Phase Trials is an essential guide for all researchers working in early phase clinical trial development, from clinical pharmacologists and pharmacokineticists through to clinical investigators and medical statisticians. It is also a valuable reference for teachers and students of pharmaceutical medicine learning about the design and analysis of clinical trials.
An introductory guide to clinical research, written specifically for junior doctors by a team of highly experienced authors. This practical book covers all areas that a junior doctor will need to consider, including funding, study design, ethics, data analysis, disseminating findings, and furthering one's research career.
Provides students and practitioners with a clear, concise introduction to the statistics they will come across in their regular reading of clinical papers. Written by three experts with wide teaching and consulting experience, Medical Statistics: A Textbook for the Health Sciences, Fourth Edition: Assumes no prior knowledge of statistics Covers all essential statistical methods Completely revised, updated and expanded Includes numerous examples and exercises on the interpretation of the statistics in papers published in medical journals From the reviews of the previous edition: "The book has several excellent features: it is written by statisticians, is.... well presented, is well referenced.... and is short." THE LANCET "Many statisticians are concerned at the generally poor standard of statistics in papers published in medical journals. Perhaps this could be remedied if more research workers would spare a few hours to read through Campbell and Machin's book." BRITISH MEDICAL JOURNAL "... a simple, interesting and insightful introduction to medical statistics... highly recommended." STATISTICAL METHODS IN MEDICAL RESEARCH "Campbell and Machin found the golden mean... this book can be recommended for all students and all medical researchers." ISCB NEWSLETTER

Best Books