Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
A thorough, systematic first course in elementary differential equations for undergraduates in mathematics and science, requiring only basic calculus for a background. Includes many exercises and problems, with answers. Index.
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.
Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.
Designed for use in a 1-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, 2nd-order partial differential equations, wave equation, potential equation, heat equation, and more. Includes exercises. 1961 edition.
Introductory treatment explores existence theorems for first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. "A rigorous and lively introduction." — The American Mathematical Monthly. 1958 edition.
Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
This unique book on ordinary differential equations addresses practical issues of composing and solving differential equations by demonstrating the detailed solutions of more than 1,000 examples. The initial draft was used to teach more than 10,000 advanced undergraduate students in engineering, physics, economics, as well as applied mathematics. It is a good source for students to learn problem-solving skills and for educators to find problems for homework assignments and tests. The 2nd edition, with at least 100 more examples and five added subsections, has been restructured to flow more pedagogically.
Als die Gute Fee H?nschen fragte: "was w?nschst Du dir?", antwortete er: "Keine Differentialgleichungen mehr in der Schule": Hans im Gl?ck! Jetzt k?nnen Sie auch auf eine Gute Fee warten, oder sich dieses Buch kaufen. Sie finden hier Hilfe sollten Sie mit linearen und nichtlinearen gew?hnlichen Differentialgleichungen ihre liebe M?he haben, seien sie nun erster, zweiter oder h?herer Ordnung. Sie lernen auch, was Sie zu Laplace Transformation, Potenzreihen und vielen anderen vertrackten Problemen wissen sollten. Sehen Sie der Realit?t ins Auge, mit diesem Buch.
Practical text shows how to formulate and solve partial differential equations. Coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, numerical and approximate methods. Solution guide available upon request. 1982 edition.
Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#
Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.
This text provides an introduction to partial differential equations and boundary value problems, including Fourier series. The treatment offers students a smooth transition from a course in elementary ordinary differential equations to more advanced topics in a first course in partial differential equations. This widely adopted and successful book also serves as a valuable reference for engineers and other professionals. The approach emphasizes applications, with particular stress on physics and engineering applications. Rich in proofs and examples, the treatment features many exercises in each section. Relevant Mathematica files are available for download from author Nakhlé Asmar's website; however, the book is completely usable without computer access. The Students' Solutions Manual can be downloaded for free from the Dover website, and the Instructor's Solutions Manual is available upon request for professors and potential teachers. The text is suitable for undergraduates in mathematics, physics, engineering, and other fields who have completed a course in ordinary differential equations.
In this highly regarded text for advanced undergraduate and graduate students, the author develops the calculus of variations both for its intrinsic interest and for its powerful applications to modern mathematical physics. Topics include first and second variations of an integral, generalizations, isoperimetrical problems, least action, special relativity, elasticity, more. 1963 edition.
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.
As the author notes in the preface, "The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short course in sets and numbers for students lacking those prerequisites, rendering the book largely self-contained. While Chapters Four and Five are more challenging, they are well within the reach of the serious student.The exercises have been carefully chosen for maximum usefulness. Some are formal and manipulative, illustrating the theory and helping to develop computational skills. Others constitute an integral part of the theory, by asking the student to supply proofs or parts of proofs omitted from the text. Still others stretch mathematical imaginations by calling for both conjectures and proofs.Taken together, text and exercises comprise an excellent introduction to the power and elegance of abstract algebra. Now available in this inexpensive edition, the book is accessible to a wide range of students, who will find it an exceptionally valuable resource. Unabridged, corrected Dover (1989) republication of the edition published by Allyn and Bacon, Boston, 1969.
Considered the best book in the field, this completely self-contained study is both an introduction to quantification theory and an exposition of new results and techniques in "analytic" or "cut free" methods. The focus in on the tableau point of view. Topics include trees, tableau method for propositional logic, Gentzen systems, more. Includes 144 illustrations.
Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.

Best Books