This is an introductory 2001 textbook on probability and induction written by one of the world's foremost philosophers of science. The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of this book are a lively and vigorous prose style; lucid and systematic organization and presentation of ideas; many practical applications; a rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science; numerous brief historical accounts of how fundamental ideas of probability and induction developed; and a full bibliography of further reading.
A thorough and practical introduction to inductive logic with a focus on arguments and the rules used for making inductive inferences.
Dieses Lehrbuch beschreibt, wie sich Menschen entscheiden, und erklärt, warum Menschen manchmal zu Beurteilungen und Entscheidungen kommen, die aus der Perspektive rationaler Entscheidungen nicht optimal sind. Das allgemein verständlich geschriebene Werk richtet sich an Studierende, an Wissenschaftler und an alle Leser, die an den psychologischen Prozessen interessiert sind, die unsere Urteile und Entscheidungen beeinflussen. Leser lernen hier die wichtigsten psychologischen Theorien und Forschungsergebnisse der Entscheidungspsychologie kennen: Wie entstehen Präferenzen, wie gehen Menschen mit Zielkonflikten und mit Unsicherheit um, und welche Rolle spielen Emotion und Intuition beim Entscheiden. Auch erfahren Sie über Entscheidungen in interessanten Anwendungsfeldern: Entscheidungen an der Börse, im Cockpit und im Gesundheitswesen. In dieser 4. Auflage wurden alle Kapitel komplett überarbeitet und auf den neuesten Stand gebracht. Zwei zusätzliche Kapitel erweitern das Themenspektrum, zum einen geht es um die Rolle von Emotionen bei Entscheidungen, zum anderen um die Integration von Entscheidungsprozessen in übergreifende kognitive Theorien. Die Entscheidungspsychologie ist Prüfungsstoff im Fach Allgemeine Psychologie, in der Sozialpsychologie und in der Arbeits- und Organisationspsychologie. Sie spielt eine wesentliche Rolle in den Wirtschaftswissenschaften (Behavioral Economics) und in anderen Sozialwissenschaften wie der Soziologie und den politischen Wissenschaften. In Bereichen wie der Medizin und dem Gesundheitswesen oder bei der Analyse technischer und gesellschaftlicher Risiken finden entscheidungspsychologische Faktoren zunehmend Beachtung.
This definitive survey of the hottest issues in inductive logic sets the stage for further classroom discussion.
Die Wahrscheinlichkeitsrechnung wird in der Schule oft nur beilï¿1⁄2ufig behandelt, dabei handelt es sich um ein besonders spannendes und alltagstaugliches Teilgebiet der Mathematik. Fï¿1⁄2r alle, die ï¿1⁄2ber dieses Thema noch etwas mehr erfahren wollen oder mï¿1⁄2ssen, erklï¿1⁄2rt Deborah Rumsey verstï¿1⁄2ndlich und mit Humor, was sie unbedingt wissen sollten. Egal ob Kontingenztabelle, zentraler Grenzwertsatz, Stichproben-, Binomial- oder Poissonverteilung, in diesem Buch lernen Sie, was es ist und wie Sie es anwenden. Zu jedem Kapitel finden Sie online eine ï¿1⁄2bungsaufgabe samt Lï¿1⁄2sung, um das Gelernte zu festigen. Auch Tipps zu praktischen Anwendungen - ob bei der Arbeit oder am Pokertisch - kommen nicht zu kurz. So finden Sie in diesem Buch alles, was Sie ï¿1⁄2ber Wahrscheinlichkeitsrechnung unbedingt wissen sollten.
A basic system of inductive logic; An axiomatic foundation for the logic of inductive generalization; A survey of inductive systems; On the condition of partial exchangeability; Representation theorems of the de finetti type; De finetti's generalizations of excahngeability; The structure of probabilities defined on first-order languages; A subjectivit's guide to objective chance.
Designed for students with no prior training in logic, INTRODUCTION TO LOGIC AND CRITICAL THINKING offers an accessible treatment of logic that enhances understanding of reasoning in everyday life. The text begins with an introduction to arguments. After some linguistic preliminaries, the text presents a detailed analysis of inductive reasoning and associated fallacies. This order of presentation helps to motivate the use of formal methods in the subsequent sections on deductive logic and fallacies. Lively and straightforward prose assists students in gaining facility with the sometimes challenging concepts of logic. By combining a sensitive treatment of ordinary language arguments with a simple but rigorous exposition of basic principles of logic, the text develops students' understanding of the relationships between logic and language, and strengthens their skills in critical thinking. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Two new philosophical problems surrounding the gradation of certainty began to emerge in the 17th century and are still very much alive today. One is concerned with the evaluation of inductive reasoning, whether in science, jurisprudence, or elsewhere; the other with the interpretation of the mathematical calculus of change. This book, aimed at non-specialists, investigates both problems and the extent to which they are connected. Cohen demonstrates the diversity of logical structures that are available for judgements of probability, and explores the rationale for their appropriateness in different contexts of application. Thus his study deals with the complexity of the underlying philosophical issues without simply cataloging alternative conceptions or espousing a particular "favorite" theory.
Logic is a field studied mainly by researchers and students of philosophy, mathematics and computing. Inductive logic seeks to determine the extent to which the premisses of an argument entail its conclusion, aiming to provide a theory of how one should reason in the face of uncertainty. It has applications to decision making and artificial intelligence, as well as how scientists should reason when not in possession of the full facts. In this book, Jon Williamson embarks on a quest to find a general, reasonable, applicable inductive logic (GRAIL), all the while examining why pioneers such as Ludwig Wittgenstein and Rudolf Carnap did not entirely succeed in this task. Along the way he presents a general framework for the field, and reaches a new inductive logic, which builds upon recent developments in Bayesian epistemology (a theory about how strongly one should believe the various propositions that one can express). The book explores this logic in detail, discusses some key criticisms, and considers how it might be justified. Is this truly the GRAIL? Although the book presents new research, this material is well suited to being delivered as a series of lectures to students of philosophy, mathematics, or computing and doubles as an introduction to the field of inductive logic
Stimulating, thought-provoking text by one of the 20th century's most creative philosophers makes accessible such topics as probability, measurement and quantitative language, causality and determinism, theoretical laws and concepts, more.
A self-contained guide to pure inductive logic, the study of rational probability treated as a branch of mathematical logic.
This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.
Presents the basic principles of inductive logic including traditional material, such as Mill's methods, as well as more modern topics, such as statistical testing of hypotheses.

Best Books