&>standalone product; MasteringEngineering® does not come packaged with this content. If you would like to purchase both the physical text and MasteringEngineering search for 0134123832 / 9780134123837 Computer Systems: A Programmer's Perspective plus MasteringEngineering with Pearson eText -- Access Card Package, 3/e Package consists of: 013409266X/9780134092669 Computer Systems: A Programmer's Perspective, 3/e 0134071921/9780134071923 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Computer Systems: A Programmer's Perspective, 3/e MasteringEngineering should only be purchased when required by an instructor. For courses in Computer Science and Programming Computer systems: A Programmer's Perspective explains the underlying elements common among all computer systems and how they affect general application performance. Written from the programmer's perspective, this book strives to teach readers how understanding basic elements of computer systems and executing real practice can lead them to create better programs. Spanning across computer science themes such as hardware architecture, the operating system, and systems software, the Third Edition serves as a comprehensive introduction to programming. This book strives to create programmers who understand all elements of computer systems and will be able to engage in any application of the field--from fixing faulty software, to writing more capable programs, to avoiding common flaws. It lays the groundwork for readers to delve into more intensive topics such as computer architecture, embedded systems, and cybersecurity. This book focuses on systems that execute an x86-64 machine code, and recommends that programmers have access to a Linux system for this course. Programmers should have basic familiarity with C or C++. Also available with MasteringEngineering MasteringEngineering is an online homework, tutorial, and assessment system, designed to improve results through personalized learning. This innovative online program emulates the instructor's office hour environment, engaging and guiding students through engineering concepts with self-paced individualized coaching With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. Students, if interested in purchasing this title with MasteringEngineering, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.
For courses in Computer Science and Programming Computer systems: A Programmer’s Perspective explains the underlying elements common among all computer systems and how they affect general application performance. Written from the programmer’s perspective, this book strives to teach students how understanding basic elements of computer systems and executing real practice can lead them to create better programs. Spanning across computer science themes such as hardware architecture, the operating system, and systems software, the Third Edition serves as a comprehensive introduction to programming. This book strives to create programmers who understand all elements of computer systems and will be able to engage in any application of the field--from fixing faulty software, to writing more capable programs, to avoiding common flaws. It lays the groundwork for students to delve into more intensive topics such as computer architecture, embedded systems, and cybersecurity. This book focuses on systems that execute an x86-64 machine code, and recommends that students have access to a Linux system for this course. Students should have basic familiarity with C or C++. MasteringEngineering® not included. Students, if MasteringEngineering is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MasteringEngineering should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information. MasteringEngineering is an online homework, tutorial, and assessment product designed to personalize learning and improve results. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.
For Computer Systems, Computer Organization and Architecture courses in CS, EE, and ECE departments. Few students studying computer science or computer engineering will ever have the opportunity to build a computer system. On the other hand, most students will be required to use and program computers on a near daily basis. Computer Systems: A Programmer's Perspective introduces the important and enduring concepts that underlie computer systems by showing how these ideas affect the correctness, performance, and utility of application programs. The text's hands-on approach (including a comprehensive set of labs) helps students understand the under-the-hood operation of a modern computer system and prepares them for future courses in systems topics such as compilers, computer architecture, operating systems, and networking.
This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.
If you know basic high-school math, you can quickly learn and apply the core concepts of computer science with this concise, hands-on book. Led by a team of experts, you’ll quickly understand the difference between computer science and computer programming, and you’ll learn how algorithms help you solve computing problems. Each chapter builds on material introduced earlier in the book, so you can master one core building block before moving on to the next. You’ll explore fundamental topics such as loops, arrays, objects, and classes, using the easy-to-learn Ruby programming language. Then you’ll put everything together in the last chapter by programming a simple game of tic-tac-toe. Learn how to write algorithms to solve real-world problems Understand the basics of computer architecture Examine the basic tools of a programming language Explore sequential, conditional, and loop programming structures Understand how the array data structure organizes storage Use searching techniques and comparison-based sorting algorithms Learn about objects, including how to build your own Discover how objects can be created from other objects Manipulate files and use their data in your software
Principles of Computer System Design is the first textbook to take a principles-based approach to the computer system design. It identifies, examines, and illustrates fundamental concepts in computer system design that are common across operating systems, networks, database systems, distributed systems, programming languages, software engineering, security, fault tolerance, and architecture. Through carefully analyzed case studies from each of these disciplines, it demonstrates how to apply these concepts to tackle practical system design problems. To support the focus on design, the text identifies and explains abstractions that have proven successful in practice such as remote procedure call, client/service organization, file systems, data integrity, consistency, and authenticated messages. Most computer systems are built using a handful of such abstractions. The text describes how these abstractions are implemented, demonstrates how they are used in different systems, and prepares the reader to apply them in future designs. The book is recommended for junior and senior undergraduate students in Operating Systems, Distributed Systems, Distributed Operating Systems and/or Computer Systems Design courses; and professional computer systems designers. Features: Concepts of computer system design guided by fundamental principles. Cross-cutting approach that identifies abstractions common to networking, operating systems, transaction systems, distributed systems, architecture, and software engineering. Case studies that make the abstractions real: naming (DNS and the URL); file systems (the UNIX file system); clients and services (NFS); virtualization (virtual machines); scheduling (disk arms); security (TLS). Numerous pseudocode fragments that provide concrete examples of abstract concepts. Extensive support. The authors and MIT OpenCourseWare provide on-line, free of charge, open educational resources, including additional chapters, course syllabi, board layouts and slides, lecture videos, and an archive of lecture schedules, class assignments, and design projects.
Analyzes cognitive, social and technical issues of end user programming. Drawing on empirical research on existing end user systems, this text examines the importance of task-specific programming languages, visual application frameworks and collaborative work practices for end user computing.
Digital Design and Computer Architecture, Second Edition, takes a unique and modern approach to digital design, introducing the reader to the fundamentals of digital logic and then showing step by step how to build a MIPS microprocessor in both Verilog and VHDL. This new edition combines an engaging and humorous writing style with an updated and hands-on approach to digital design. It presents new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, the book uses these fundamental building blocks as the basis for the design of an actual MIPS processor. It provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. There are also additional exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing, plus a new appendix on C programming to strengthen the connection between programming and processor architecture. This new edition will appeal to professional computer engineers and to students taking a course that combines digital logic and computer architecture. Updated based on instructor feedback with more exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing Presents digital system design examples in both VHDL and SystemVerilog (updated for the second edition from Verilog), shown side-by-side to compare and contrast their strengths Includes a new chapter on C programming to provide necessary prerequisites and strengthen the connection between programming and processor architecture Companion Web site includes links to Xilinx CAD tools for FPGA design, lecture slides, laboratory projects, and solutions to exercises. Instructors can also register at textbooks.elsevier.com for access to: Solutions to all exercises (PDF) Lab materials with solutions HDL for textbook examples and exercise solutions Lecture slides (PPT) Sample exams\ Sample course syllabus Figures from the text (JPG, PPT)
"drawings by Duane Bibby" foreword and afterword by Guy L. Steele Jr. "I learned more about LISP from this book than I have from any of the other LISP books I've read over the years. . . . While other books will tell you the mechanics of LISP, they can leave you largely uninformed on the style of problem-solving for which LISP is optimized. The Little LISPer teaches you how to think in the LISP language. . . an inexpensive, enjoyable introduction." -- Gregg Williams, Byte The notion that "thinking about computing is one of the most exciting things the human mind can do" sets both "The Little Schemer" (formerly known as "The Little LISPer" ) and its new companion volume, "The Seasoned Schemer," apart from other books on LISP. The authors' enthusiasm for their subject is compelling as they present abstract concepts in a humorous and easy-to-grasp fashion. Together, these books will open new doors of thought to anyone who wants to find out what computing is really about. "The Little Schemer" introduces computing as an extension of arithmetic and algebra -- things that everyone studies in grade school and high school. It introduces programs as recursive functions and briefly discusses the limits of what computers can do. The authors use the programming language Scheme, and interesting foods to illustrate these abstract ideas. "The Seasoned Schemer" informs the reader about additional dimensions of computing: functions as values, change of state, and exceptional cases. "The Little LISPer" has been a popular introduction to LISP for many years. It had appeared in French and Japanese. "The Little Schemer" and"The Seasoned Schemer" are worthy successors and will prove equally popular as textbooks for Scheme courses as well as companion texts for any complete introductory course in Computer Science. Download DrScheme - a graphical environment for developing Scheme programs
Whatever your programming language, whatever your platform, you probably tap into linker and loader functions all the time. But do you know how to use them to their greatest possible advantage? Only now, with the publication of Linkers & Loaders, is there an authoritative book devoted entirely to these deep-seated compile-time and run-time processes. The book begins with a detailed and comparative account of linking and loading that illustrates the differences among various compilers and operating systems. On top of this foundation, the author presents clear practical advice to help you create faster, cleaner code. You'll learn to avoid the pitfalls associated with Windows DLLs, take advantage of the space-saving, performance-improving techniques supported by many modern linkers, make the best use of the UNIX ELF library scheme, and much more. If you're serious about programming, you'll devour this unique guide to one of the field's least understood topics. Linkers & Loaders is also an ideal supplementary text for compiler and operating systems courses. *Includes a linker construction project written in Perl, with project files available for download. *Covers dynamic linking in Windows, UNIX, Linux, BeOS, and other operating systems. *Explains the Java linking model and how it figures in network applets and extensible Java code. *Helps you write more elegant and effective code, and build applications that compile, load, and run more efficiently.
In the early days of computing, hardware and software systems were designed separately. Today, as multicore systems predominate, this separation is becoming impractical.Computer Systems examines the key elements of all computer systems using an integrated approach that treats hardware and software as part of the same, larger system. Students gain important insights into the interplay between hardware and software and leave the course with a better understanding of a modern computer system
Computer Architecture/Software Engineering
What do flashlights, the British invasion, black cats, and seesaws have to do with computers? In CODE, they show us the ingenious ways we manipulate language and invent new means of communicating with each other. And through CODE, we see how this ingenuity and our very human compulsion to communicate have driven the technological innovations of the past two centuries. Using everyday objects and familiar language systems such as Braille and Morse code, author Charles Petzold weaves an illuminating narrative for anyone who’s ever wondered about the secret inner life of computers and other smart machines. It’s a cleverly illustrated and eminently comprehensible story—and along the way, you’ll discover you’ve gained a real context for understanding today’s world of PCs, digital media, and the Internet. No matter what your level of technical savvy, CODE will charm you—and perhaps even awaken the technophile within.
Updated for C11 Write powerful C programs…without becoming a technical expert! This book is the fastest way to get comfortable with C, one incredibly clear and easy step at a time. You’ll learn all the basics: how to organize programs, store and display data, work with variables, operators, I/O, pointers, arrays, functions, and much more. C programming has neverbeen this simple! Who knew how simple C programming could be? This is today’s best beginner’s guide to writing C programs–and to learning skills you can use with practically any language. Its simple, practical instructions will help you start creating useful, reliable C code, from games to mobile apps. Plus, it’s fully updated for the new C11 standard and today’s free, open source tools! Here’s a small sample of what you’ll learn: • Discover free C programming tools for Windows, OS X, or Linux • Understand the parts of a C program and how they fit together • Generate output and display it on the screen • Interact with users and respond to their input • Make the most of variables by using assignments and expressions • Control programs by testing data and using logical operators • Save time and effort by using loops and other techniques • Build powerful data-entry routines with simple built-in functions • Manipulate text with strings • Store information, so it’s easy to access and use • Manage your data with arrays, pointers, and data structures • Use functions to make programs easier to write and maintain • Let C handle all your program’s math for you • Handle your computer’s memory as efficiently as possible • Make programs more powerful with preprocessing directives
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This text is intended for use in the second programming course Programming is a matter of learning by doing. Eric Roberts’ Programming Abstractions in C++ gives students opportunities to practice and learn with engaging graphical assignments. A client-first approach to data structures helps students absorb, and then apply the material. Teaching and Learning Experience This program presents a better teaching and learning experience—for you and your students. It will help: Improve Student Comprehension with a Client-first Approach to Data Structures: To aid in student understanding, this book presents the full set of collection classes early. Defer the Presentation of C++ Features that Require a Detailed Understanding of the Underlying Machine: Introducing collection classes early enables students to master other equally important topics without having to struggle with low-level details at the same time. Engage Students with Exciting Graphical Assignments: An open-source library supports graphics and interactivity in a simple, pedagogically appropriate way. Support Instructors and Students: The companion website provides source code, sample run PDFs, answers to review questions, and more.
Any UNIX programmer using the latest workstations or super minicomputers from vendors such as Sun, Silicon Graphics (SGI), ATandT, Amdahl, IBM, Apple, Compaq, Mentor Graphics, and Thinking Machines needs this book to optimize his/her job performance. This book teaches how these architectures operate using clear, comprehensible examples to explain the concepts, and provides a good reference for people already familiar with the basic concepts.
You Will Learn C! Zed Shaw has crafted the perfect course for the beginning C programmer eager to advance their skills in any language. Follow it and you will learn the many skills early and junior programmers need to succeed–just like the hundreds of thousands of programmers Zed has taught to date! You bring discipline, commitment, persistence, and experience with any programming language; the author supplies everything else. In Learn C the Hard Way , you’ll learn C by working through 52 brilliantly crafted exercises. Watch Zed Shaw’s teaching video and read the exercise. Type his code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn what good, modern C programs look like; how to think more effectively about code; and how to find and fix mistakes far more efficiently. Most importantly, you’ll master rigorous defensive programming techniques, so you can use any language to create software that protects itself from malicious activity and defects. Through practical projects you’ll apply what you learn to build confidence in your new skills. Shaw teaches the key skills you need to start writing excellent C software, including Setting up a C environment Basic syntax and idioms Compilation, make files, and linkers Operators, variables, and data types Program control Arrays and strings Functions, pointers, and structs Memory allocation I/O and files Libraries Data structures, including linked lists, sort, and search Stacks and queues Debugging, defensive coding, and automated testing Fixing stack overflows, illegal memory access, and more Breaking and hacking your own C code It’ll Be Hard at First. But Soon, You’ll Just Get It–And That Will Feel Great! This tutorial will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful programming languages. You’ll be a C programmer.
Programming in C will teach you how to write programs in the C programming language. Whether you’re a novice or experienced programmer, this book will provide you with a clear understanding of this language, which is the foundation for many object-oriented programming languages such as C++, Objective-C, C#, and Java. This book teaches C by example, with complete C programs used to illustrate each new concept along the way. Stephen Kochan provides step-by-step explanations for all C functions. You will learn both the language fundamentals and good programming practices. Exercises at the end of each chapter make the book ideally suited for classroom use or for self-instruction. All the features of the C language are covered in this book, including the latest additions added with the C11 standard. Appendixes provide a detailed summary of the language and the standard C library, both organized for quick reference. “Absolutely the best book for anyone starting out programming in C. This is an excellent introductory text with frequent examples and good text.…This is the book I used to learn C–it’s a great book.” –Vinit S. Carpenter, Learn C/C++ Today
The real challenge of programming isn't learning a language's syntax—it's learning to creatively solve problems so you can build something great. In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to: –Split problems into discrete components to make them easier to solve –Make the most of code reuse with functions, classes, and libraries –Pick the perfect data structure for a particular job –Master more advanced programming tools like recursion and dynamic memory –Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Computer Organization and Design, Fifth Edition, is the latest update to the classic introduction to computer organization. The text now contains new examples and material highlighting the emergence of mobile computing and the cloud. It explores this generational change with updated content featuring tablet computers, cloud infrastructure, and the ARM (mobile computing devices) and x86 (cloud computing) architectures. The book uses a MIPS processor core to present the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies and I/O.Because an understanding of modern hardware is essential to achieving good performance and energy efficiency, this edition adds a new concrete example, Going Faster, used throughout the text to demonstrate extremely effective optimization techniques. There is also a new discussion of the Eight Great Ideas of computer architecture. Parallelism is examined in depth with examples and content highlighting parallel hardware and software topics. The book features the Intel Core i7, ARM Cortex-A8 and NVIDIA Fermi GPU as real-world examples, along with a full set of updated and improved exercises. This new edition is an ideal resource for professional digital system designers, programmers, application developers, and system software developers. It will also be of interest to undergraduate students in Computer Science, Computer Engineering and Electrical Engineering courses in Computer Organization, Computer Design, ranging from Sophomore required courses to Senior Electives. Winner of a 2014 Texty Award from the Text and Academic Authors Association Includes new examples, exercises, and material highlighting the emergence of mobile computing and the cloud Covers parallelism in depth with examples and content highlighting parallel hardware and software topics Features the Intel Core i7, ARM Cortex-A8 and NVIDIA Fermi GPU as real-world examples throughout the book Adds a new concrete example, "Going Faster," to demonstrate how understanding hardware can inspire software optimizations that improve performance by 200 times Discusses and highlights the "Eight Great Ideas" of computer architecture: Performance via Parallelism; Performance via Pipelining; Performance via Prediction; Design for Moore's Law; Hierarchy of Memories; Abstraction to Simplify Design; Make the Common Case Fast; and Dependability via Redundancy Includes a full set of updated and improved exercises

Best Books