Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.
This edited volume addresses the importance of mathematics for industry and society by presenting highlights from contract research at the Department of Applied Mathematics at SINTEF, the largest independent research organization in Scandinavia. Examples range from computer-aided geometric design, via general purpose computing on graphics cards, to reservoir simulation for enhanced oil recovery. Contributions are written in a tutorial style.
Translations of articles on mathematics appearing in various Russian mathematical serials.
Time dependent problems frequently pose challenges in areas of science and engineering dealing with numerical analysis, scientific computation, mathematical models, and most importantly—numerical experiments intended to analyze physical behavior and test design. Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs). The book is written in two parts. Part I discusses problems with periodic solutions; Part II proceeds to discuss initial boundary value problems for partial differential equations and numerical methods for them. The problems with periodic solutions have been chosen because they allow the application of Fourier analysis without the complication that arises from the infinite domain for the corresponding Cauchy problem. Furthermore, the analysis of periodic problems provides necessary conditions when constructing methods for initial boundary value problems. Much of the material included in Part II appears for the first time in this book. The authors draw on their own interests and combined extensive experience in applied mathematics and computer science to bring about this practical and useful guide. They provide complete discussions of the pertinent theorems and back them up with examples and illustrations. For physical scientists, engineers, or anyone who uses numerical experiments to test designs or to predict and investigate physical phenomena, this invaluable guide is destined to become a constant companion. Time Dependent Problems and Difference Methods analysts, mathematical modelers, and graduate students of applied mathematics and scientific computations.
This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.
A one–of–a–kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book′s algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem–solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class–tested to ensure an easy–to–follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper–undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
This book contains a rigorous mathematical treatment of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Questions of local density and the existence of tangents of such sets are studied, as well as the dimensional properties of their projections in various directions. In the case of sets of integral dimension the dramatic differences between regular 'curve-like' sets and irregular 'dust like' sets are exhibited. The theory is related by duality to Kayeka sets (sets of zero area containing lines in every direction). The final chapter includes diverse examples of sets to which the general theory is applicable: discussions of curves of fractional dimension, self-similar sets, strange attractors, and examples from number theory, convexity and so on. There is an emphasis on the basic tools of the subject such as the Vitali covering lemma, net measures and Fourier transform methods.

Best Books