The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.
Having trouble deciding which coding scheme to employ, how to design a new scheme, or how to improve an existing system? This summary of the state-of-the-art in iterative coding makes this decision more straightforward. With emphasis on the underlying theory, techniques to analyse and design practical iterative coding systems are presented. Using Gallager's original ensemble of LDPC codes, the basic concepts are extended for several general codes, including the practically important class of turbo codes. The simplicity of the binary erasure channel is exploited to develop analytical techniques and intuition, which are then applied to general channel models. A chapter on factor graphs helps to unify the important topics of information theory, coding and communication theory. Covering the most recent advances, this text is ideal for graduate students in electrical engineering and computer science, and practitioners. Additional resources, including instructor's solutions and figures, available online: www.cambridge.org/9780521852296.
Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.
Statistical Physics and Information Theory is a succinct in-depth review and tutorial of a subject that promises to lead to major advances in computer and communication security
First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.
An expert guide to the relationship between information theory and the physics of wave propagation, covering stochastic and deterministic approaches, engineering applications, and the universal physical limits of radiation. It is an ideal reference for researchers and graduate students in electrical engineering, physics, and applied mathematics.
Thomas M. Cover and B. Gopinatb The papers in this volume are the contributions to a special workshop on problems in communication and computation conducted in the summers of 1984 and 1985 in Morristown, New Jersey, and the summer of 1986 in Palo Alto. California. The structure of this workshop was unique: no recent results. no surveys. Instead. we asked for outstanding open prob~ lems in the field. There are many famous open problems, including the question P = NP?, the simplex conjecture in communication theory, the capacity region of the broadcast channel. and the two·helper problem in information theory. Beyond these well-defined problems are certain grand research goals. What is the general theory of information flow in stochastic networks? What is a comprehensive theory of computational complexity? What about a unification of algorithmic complexity and computational complex ity? Is there a notion of energy-free computation? And if so, where do information theory, communication theory, computer science, and physics meet at the atomic level? Is there a duality between computation and communication? Finally. what is the ultimate impact of algorithmic com plexity on probability theory? And what is its relationship to information theory? The idea was to present problems on the first day. try to solve them on the second day, and present the solutions on the third day. In actual fact, only one problem was solved during the meeting -- El Gamal's prob· lem on noisy communication over a common line.
Information Theory and Evolution discusses the phenomenon of life, including its origin and evolution (and also human cultural evolution), against the background of thermodynamics, statistical mechanics, and information theory. Among the central themes is the seeming contradiction between the second law of thermodynamics and the high degree of order and complexity produced by living systems. This paradox has its resolution in the information content of the Gibbs free energy that enters the biosphere from outside sources, as the author will show. The role of information in human cultural evolution is another focus of the book. The first edition of Information Theory and Evolution made a strong impact on thought in the field by bringing together results from many disciplines. The new second edition offers updated results based on reports of important new research in several areas, including exciting new studies of the human mitochondrial and Y-chromosomal DNA. Another extensive discussion featured in the second edition is contained in a new appendix devoted to the relationship of entropy and Gibbs free energy to economics. This appendix includes a review of the ideas of Alfred Lotka, Frederick Soddy, Nicholas Georgiescu-Roegen and Herman E. Daly, and discusses the relevance of these ideas to the current economic crisis. The new edition discusses current research on the origin of life, the distinction between thermodynamic information and cybernetic information, new DNA research and human prehistory, developments in current information technology, and the relationship between entropy and economics.
Mallat's book is the undisputed reference in this field - it is the only one that covers the essential material in such breadth and depth. - Laurent Demanet, Stanford University The new edition of this classic book gives all the major concepts, techniques and applications of sparse representation, reflecting the key role the subject plays in today's signal processing. The book clearly presents the standard representations with Fourier, wavelet and time-frequency transforms, and the construction of orthogonal bases with fast algorithms. The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications. Features: * Balances presentation of the mathematics with applications to signal processing * Algorithms and numerical examples are implemented in WaveLab, a MATLAB toolbox New in this edition * Sparse signal representations in dictionaries * Compressive sensing, super-resolution and source separation * Geometric image processing with curvelets and bandlets * Wavelets for computer graphics with lifting on surfaces * Time-frequency audio processing and denoising * Image compression with JPEG-2000 * New and updated exercises A Wavelet Tour of Signal Processing: The Sparse Way, Third Edition, is an invaluable resource for researchers and R&D engineers wishing to apply the theory in fields such as image processing, video processing and compression, bio-sensing, medical imaging, machine vision and communications engineering. Stephane Mallat is Professor in Applied Mathematics at École Polytechnique, Paris, France. From 1986 to 1996 he was a Professor at the Courant Institute of Mathematical Sciences at New York University, and between 2001 and 2007, he co-founded and became CEO of an image processing semiconductor company. Includes all the latest developments since the book was published in 1999, including its application to JPEG 2000 and MPEG-4 Algorithms and numerical examples are implemented in Wavelab, a MATLAB toolbox Balances presentation of the mathematics with applications to signal processing
This elementary introduction to probability theory and information theory provides a clear and systematic foundation to the subject; the author pays particular attention to the concept of probability via a highly simplified discussion of measures on Boolean algebras. He then applies the theoretical ideas to practical areas such as statistical inference, random walks, statistical mechanics, and communications modeling. Applebaum deals with topics including discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem, and the coding and transmission of information. The author includes many examples and exercises that illustrate how the theory can be applied, e.g. to information technology. Solutions are available by email. This book is suitable as a textbook for beginning students in mathematics, statistics, or computer science who have some knowledge of basic calculus.
An effective blend of carefully explained theory and practical applications, this text imparts the fundamentals of both information theory and data compression. Although the two topics are related, this unique text allows either topic to be presented independently, and it was specifically designed so that the data compression section requires no prior knowledge of information theory. The treatment of information theory, while theoretical and abstract, is quite elementary, making this text less daunting than many others. After presenting the fundamental definitions and results of the theory, the authors then apply the theory to memoryless, discrete channels with zeroth-order, one-state sources. The chapters on data compression acquaint students with a myriad of lossless compression methods and then introduce two lossy compression methods. Students emerge from this study competent in a wide range of techniques. The authors' presentation is highly practical but includes some important proofs, either in the text or in the exercises, so instructors can, if they choose, place more emphasis on the mathematics. Introduction to Information Theory and Data Compression, Second Edition is ideally suited for an upper-level or graduate course for students in mathematics, engineering, and computer science. Features: Expanded discussion of the historical and theoretical basis of information theory that builds a firm, intuitive grasp of the subject Reorganization of theoretical results along with new exercises, ranging from the routine to the more difficult, that reinforce students' ability to apply the definitions and results in specific situations. Simplified treatment of the algorithm(s) of Gallager and Knuth Discussion of the information rate of a code and the trade-off between error correction and information rate Treatment of probabilistic finite state source automata, including basic results, examples, references, and exercises Octave and MATLAB image compression codes included in an appendix for use with the exercises and projects involving transform methods Supplementary materials, including software, available for download from the authors' Web site at www.dms.auburn.edu/compression
Provides statistical tools and techniques needed to understand today's financial markets The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods. The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics: Analysis and application of univariate financial time series Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find: Consistent covariance estimation under heteroscedasticity and serial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.
Originally developed by Claude Shannon in the 1940s, information theory laid the foundations for the digital revolution, and is now an essential tool in telecommunications, genetics, linguistics, brain sciences, and deep space communication. In this richly illustrated book, accessible examples are used to introduce information theory in terms of everyday games like ‘20 questions’ before more advanced topics are explored. Online MatLab and Python computer programs provide hands-on experience of information theory in action, and PowerPoint slides give support for teaching. Written in an informal style, with a comprehensive glossary and tutorial appendices, this text is an ideal primer for novices who wish to learn the essential principles and applications of information theory.

Best Books