This book is devoted entirely to the theory of finite fields.
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and each chapter is self contained and peer reviewed. The first part of the book traces the history of finite fields through the eighteenth and nineteenth centuries. The second part presents theoretical properties of finite fields, covering polynomials, special functions, sequences, algorithms, curves, and related computational aspects. The final part describes various mathematical and practical applications of finite fields in combinatorics, algebraic coding theory, cryptographic systems, biology, quantum information theory, engineering, and other areas. The book provides a comprehensive index and easy access to over 3,000 references, enabling you to quickly locate up-to-date facts and results regarding finite fields.
Fundamental arithmetic operations support virtually all of the engineering, scientific, and financial computations required for practical applications, from cryptography, to financial planning, to rocket science. This comprehensive reference provides researchers with the thorough understanding of number representations that is a necessary foundation for designing efficient arithmetic algorithms. Using the elementary foundations of radix number systems as a basis for arithmetic, the authors develop and compare alternative algorithms for the fundamental operations of addition, multiplication, division, and square root with precisely defined roundings. Various finite precision number systems are investigated, with the focus on comparative analysis of practically efficient algorithms for closed arithmetic operations over these systems. Each chapter begins with an introduction to its contents and ends with bibliographic notes and an extensive bibliography. The book may also be used for graduate teaching: problems and exercises are scattered throughout the text and a solutions manual is available for instructors.
This work offers a comprehensive account of skew fields and related mathematics.
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
Results of research on classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields.
A comprehensive account that gives equal attention to the combinatorial, logical and applied aspects of partially ordered sets.
An introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra.
Now in its second edition, this book gives a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. In the first part the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. This revised edition includes two brand new chapters surveying recent developments in the area and an even more comprehensive bibliography, making this book an essential and up-to-date resource for all those working in stochastic differential equations.
Presents an updated version of Weyl's invariant theory of the classical groups, together with many of the important recent developments.
This volume contains the proceedings of the 10th International Congress on Finite Fields and their Applications (Fq 10), held July 11-15, 2011, in Ghent, Belgium. Research on finite fields and their practical applications continues to flourish. This volume's topics, which include finite geometry, finite semifields, bent functions, polynomial theory, designs, and function fields, show the variety of research in this area and prove the tremendous importance of finite field theory.
Accessible to junior and senior undergraduate students, this survey contains many examples, solved exercises, sets of problems, and parts of abstract algebra of use in many other areas of discrete mathematics. Although this is a mathematics book, the authors have made great efforts to address the needs of users employing the techniques discussed. Fully worked out computational examples are backed by more than 500 exercises throughout the 40 sections. This new edition includes a new chapter on cryptology, and an enlarged chapter on applications of groups, while an extensive chapter has been added to survey other applications not included in the first edition. The book assumes knowledge of the material covered in a course on linear algebra and, preferably, a first course in (abstract) algebra covering the basics of groups, rings, and fields.
This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.
This book developed from a course on finite fields I gave at the University of Illinois at Urbana-Champaign in the Spring semester of 1979. The course was taught at the request of an exceptional group of graduate students (includ ing Anselm Blumer, Fred Garber, Evaggelos Geraniotis, Jim Lehnert, Wayne Stark, and Mark Wallace) who had just taken a course on coding theory from me. The theory of finite fields is the mathematical foundation of algebraic coding theory, but in coding theory courses there is never much time to give more than a "Volkswagen" treatment of them. But my 1979 students wanted a "Cadillac" treatment, and this book differs very little from the course I gave in response. Since 1979 I have used a subset of my course notes (correspond ing roughly to Chapters 1-6) as the text for my "Volkswagen" treatment of finite fields whenever I teach coding theory. There is, ironically, no coding theory anywhere in the book! If this book had a longer title it would be "Finite fields, mostly of char acteristic 2, for engineering and computer science applications. " It certainly does not pretend to cover the general theory of finite fields in the profound depth that the recent book of Lidl and Neidereitter (see the Bibliography) does.
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Best Books