An ideal introductory text for advanced undergraduate students in astronomy and physics.
In diesem kompetent geschriebenen Lehrbuch wird, ausgehend von der Beschreibung unserer Milchstraße, die Astronomie der Galaxien und ihrer großräumigen Verteilung eingehend dargestellt und schließlich im kosmologischen Kontext diskutiert. Aufbauend auf eine Einführung in die moderne beobachtende und theoretische Kosmologie wird die Entstehung von Strukturen und astronomischen Objekten im frühen Universum besprochen.
This second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. While this book has grown out of introductory university courses on astronomy and astrophysics and includes a set of problems and solutions, it will not only benefit undergraduate students and lecturers; thanks to the comprehensive coverage of the field, even graduate students and researchers specializing in related fields will appreciate it as a valuable reference work.
Delineating the huge strides taken in cosmology in the past ten years, this much-anticipated second edition of Malcolm Longair's highly appreciated textbook has been extensively and thoroughly updated. It tells the story of modern astrophysical cosmology from the perspective of one of its most important and fundamental problems – how did the galaxies come about? Longair uses this approach to introduce the whole of what may be called "classical cosmology". What’s more, he describes how the study of the origin of galaxies and larger-scale structures in the Universe has provided us with direct information about the physics of the very early Universe.
This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The First Galaxies in the Universe starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more. Provides a comprehensive introduction to this exciting frontier in astrophysics Begins from first principles Covers advanced topics such as the first stars and 21-cm cosmology Prepares students for research using the next generation of large telescopes Discusses many open questions to be explored in the coming decade
This is a truly astonishing book, invaluable for anyone with an interest in astronomy. Physics Bulletin Just the thing for a first year university science course. Nature This is a beautiful book in both concept and execution. Sky & Telescope
This introductory textbook has been designed by a team of experts for elementary university courses in astronomy and astrophysics. It starts with a detailed discussion of the structure and history of our own Galaxy, the Milky Way, and goes on to give a general introduction to normal and active galaxies including models for their formation and evolution. The second part of the book provides an overview of the wide range of cosmological models and discusses the Big Bang and the expansion of the Universe. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur astronomers as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials.
For every galaxy in the field or in clusters, there are about three galaxies in groups. The Milky Way itself resides in a group. Groups in the local universe offer the chance to study galaxies in environments characterized by strong interactions. In the cosmological context, groups trace large-scale structures better than clusters; the evolution of groups and clusters appears to be related. All these aspects of research are summarized in this book.
An Introduction to Modern Cosmology Third Edition is anaccessible account of modern cosmological ideas. The Big BangCosmology is explored, looking at its observational successes inexplaining the expansion of the Universe, the existence andproperties of the cosmic microwave background, and the origin oflight elements in the universe. Properties of the very earlyUniverse are also covered, including the motivation for a rapidperiod of expansion known as cosmological inflation. The thirdedition brings this established undergraduate textbook up-to-datewith the rapidly evolving observational situation. This fully revised edition of a bestseller takes an approachwhich is grounded in physics with a logical flow of chaptersleading the reader from basic ideas of the expansion described bythe Friedman equations to some of the more advanced ideas about theearly universe. It also incorporates up-to-date results from thePlanck mission, which imaged the anisotropies of the CosmicMicrowave Background radiation over the whole sky. The AdvancedTopic sections present subjects with more detailed mathematicalapproaches to give greater depth to discussions. Student problemswith hints for solving them and numerical answers are embedded inthe chapters to facilitate the reader’s understanding andlearning. Cosmology is now part of the core in many degree programs. Thiscurrent, clear and concise introductory text is relevant to a widerange of astronomy programs worldwide and is essential reading forundergraduates and Masters students, as well as anyone startingresearch in cosmology. Supplementary material, includingfull-colour images, updates and links for students and instructors,is available on the author’s website: ahref="http://www.roe.ac.uk/~arl/"http://www.roe.ac.uk/~arl//a.
A thorough introduction to modern ideas on cosmology and on the physical basis of the general theory of relativity, An Introduction to the Science of Cosmology explores various theories and ideas in big bang cosmology, providing insight into current problems. Assuming no previous knowledge of astronomy or cosmology, this book takes you beyond introductory texts to the point where you are able to read and appreciate the scientific literature, which is broadly referenced in the book. The authors present the standard big bang theory of the universe and provide an introduction to current inflationary cosmology, emphasizing the underlying physics without excessive technical detail. The book treats cosmological models without reliance on prior knowledge of general relativity, the necessary physics being introduced in the text as required. It also covers recent observational evidence pointing to an accelerating expansion of the universe. The first several chapters provide an introduction to the topics discussed later in the book. The next few chapters introduce relativistic cosmology and the classic observational tests. One chapter gives the main results of the hot big bang theory. Next, the book presents the inflationary model and discusses the problem of the origin of structure and the correspondingly more detailed tests of relativistic models. Finally, the book considers some general issues raised by expansion and isotropy. A reference section completes the work by listing essential formulae, symbols, and physical constants. Beyond the level of many elementary books on cosmology, An Introduction to the Science of Cosmology encompasses numerous recent developments and ideas in the area. It provides more detailed coverage than many other titles available, and the inclusion of problems at the end of each chapter aids in self study and makes the book suitable for taught courses.
Intended for undergraduate non-science majors, satisfying a general education requirement or seeking an elective in natural science, this is a physics text, but with the emphasis on topics and applications in astronomy. The perspective is thus different from most undergraduate astronomy courses: rather than discussing what is known about the heavens, this text develops the principles of physics so as to illuminate what we see in the heavens. The fundamental principles governing the behaviour of matter and energy are thus used to study the solar system, the structure and evolution of stars, and the early universe. The first part of the book develops Newtonian mechanics towards an understanding of celestial mechanics, while chapters on electromagnetism and elementary quantum theory lay the foundation of the modern theory of the structure of matter and the role of radiation in the constitution of stars. Kinetic theory and nuclear physics provide the basis for a discussion of stellar structure and evolution, and an examination of red shifts and other observational data provide a basis for discussions of cosmology and cosmogony.
Compiled by a team of experts, this textbook has been designed for introductory university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation. The composition, internal structure, surface morphology and atmospheres of the terrestrial planets are then described. This leads naturally to a discussion of the giant planets and why they are compositionally different. Minor bodies are reviewed and the book concludes with a discussion of the origin of the Solar System and the evidence from meteorites. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials.
This well-established, graduate-level textbook is a thorough introduction to radio telescopes and techniques for students and researchers new to the subject.
Illustrations, photographs, star charts, moon maps, and scientific diagrams are compiled in a reference tool that explores the new solar system, the birth and death of stars, black holes, and space engineering.
Galaxies are the building blocks of the Universe: standing like islands in space, they are where the stars are born and where extraordinary phenomena can be observed. Many exciting discoveries have been made: how a supermassive black hole lurks at the centre of every galaxy, how enormous forces are released when galaxies collide, and what the formation of young galaxies can tell us about the mysteries of Cold Dark Matter. In this Very Short Introduction, renowned science writer John Gribbin describes the extraordinary things that astronomers are learning about galaxies, and explains how this can shed light on the origins and structure of the Universe.
Consistent with previous editions of An Introduction to Physical Science, the goal of the new Thirteenth edition is to stimulate students' interest in and gain knowledge of the physical sciences. Presenting content in such a way that students develop the critical reasoning and problem-solving skills that are needed in an ever-changing technological world, the authors emphasize fundamental concepts as they progress through the five divisions of physical sciences: physics, chemistry, astronomy, meteorology, and geology. Ideal for a non-science majors course, topics are treated both descriptively and quantitatively, providing instructors the flexibility to emphasize an approach that works best for their students. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
The first comprehensive graduate-level textbook on one of the most dynamic areas of contemporary astronomy - the study of 'active galactic nuclei'.
An introductory textbook on mathematical cosmology for beginning graduate students.
Here it is, in a nutshell: the history of one genius’s most crucial work – discoveries that were to change the face of modern physics. In the early 1900s, Albert Einstein formulated two theories that would forever change the landscape of physics: the Special Theory of Relativity and the General Theory of Relativity. Respected American academic Professor Tai Chow tells us the story of these discoveries. He details the basic ideas of Einstein, including his law of gravitation. Deftly employing his inimitable writing style, he goes on to explain the physics behind black holes, weaving into his account an explanation of the structure of the universe and the science of cosmology.

Best Books