REA’s Plane and Solid (Space) Geometry Problem Solver Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. Answers to all of your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. They're perfect for undergraduate and graduate studies. This highly useful reference covers topics in plane and solid (space) geometry. Pictorial diagrams with thorough explanations on solving problems incongruence, parallelism, inequalities, similarities, triangles, circles, polygons, constructions, and coordinate/analytic geometry.
Provides each kind of problem that might appear on an examination, and includes detailed solutions
The Problem Solvers are an exceptional series of books that are thorough, unusually well-organized, and structured in such a way that they can be used with any text. No other series of study and solution guides has come close to the Problem Solvers in usefulness, quality, and effectiveness. Educators consider the Problem Solvers the most effective series of study aids on the market. Students regard them as most helpful for their school work and studies. With these books, students do not merely memorize the subject matter, they really get to understand it. Each Problem Solver is over 1,000 pages, yet each saves hours of time in studying and finding solutions to problems. These solutions are worked out in step-by-step detail, thoroughly and clearly. Each book is fully indexed for locating specific problems rapidly. For linear algebra courses, as well as for courses in computers, physics, engineering, and sciences which use linear algebra. Concentrations on solutions to applied problems in economics, mechanics, electricity, chemistry, geometry, business, probability, graph theory, and linear programming.
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. Answers to all of your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of accounting currently available, with hundreds of accounting problems that cover everything from interest and cash flow to taxes and corporate earnings. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. - Educators consider the PROBLEM SOLVERS the most effective and valuable study aids; students describe them as "fantastic" - the best books on the market. TABLE OF CONTENTS Introduction Chapter 1: Earnings Per Share of the Corporation Chapter 2: Stocks Chapter 3: Retained Earnings Chapter 4: Earning Per Share of the Corporation Chapter 5: Investments in Stocks and Bonds Chapter 6: The Balance Sheet Chapter 7: Interest and Money's Value Chapter 8: Cash and Receivables Chapter 9: Inventories Chapter 10: Determination of Ending Inventories Chapter 11: Long-Term Assets Chapter 12: Depreciation, Depletion, and Amortization Chapter 13: Intangible Assets Chapter 14: Current Liabilities Chapter 15: Long-Term Liabilities Chapter 16: Recognizing Revenue Chapter 17: Income Tax Accounting Chapter 18: Accounting for Pensions Chapter 19: Leases Chapter 20: Changes in Accounting Systems and Analysis of Errors Chapter 21: Cash Flow Chapter 22: Analysis of Financial Statements Index WHAT THIS BOOK IS FOR Students have generally found accounting a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of accounting continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of accounting terms also contribute to the difficulties of mastering the subject. In a study of accounting, REA found the following basic reasons underlying the inherent difficulties of accounting: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem that leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an accounting professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing accounting processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to accounting than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in accounting overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers accounting a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.
Number Power is the first choice for those who want to develop and improve their math skills! Number Power 4: Geometry introduces lines, angles, triangles, other plane figures, and solid figures.
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second-half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
Practice makes perfect! Get perfect with a thousand and one practice problems! 1,001 Geometry Practice Problems For Dummies gives you 1,001 opportunities to practice solving problems that deal with core geometry topics, such as points, lines, angles, and planes, as well as area and volume of shapes. You'll also find practice problems on more advanced topics, such as proofs, theorems, and postulates. The companion website gives you free online access to 500 practice problems and solutions. You can track your progress and ID where you should focus your study time. The online component works in conjunction with the book to help you polish your skills and build confidence. As the perfect companion to Geometry For Dummies or a stand-alone practice tool for students, this book & website will help you put your geometry skills into practice, encouraging deeper understanding and retention. The companion website includes: Hundreds of practice problems Customizable practice sets for self-directed study Problems ranked as easy, medium, and hard Free one-year access to the online questions bank With 1,001 Geometry Practice Problems For Dummies, you'll get the practice you need to master geometry and gain confidence in the classroom.
This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.
An Unabridged Printing, With Text And All Figures Digitally Enlarged. Chapters Include: PLANE GEOMETRY - Rectilinear Figures - The Circle - Proportion - Similar Polygons - Areas Of Polygons - Regular Polygons And Circles - Appendix To Plane Geometry (Symmetry, Maxima And Minima) - SOLID GEOMETRY - Lines And Planes In Space - Polyhedrons, Cylinders, And Cones - The Sphere - Appendix To Solid Geometry - Recreations Of Geometry - Suggestions As To Beginning Demonstrative Geometry - Applications Of Geometry - The History Of Geometry - Table Of Formulas - Comprehensive Index
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of differential equations currently available, with hundreds of differential equations problems that cover everything from integrating factors and Bernoulli's equation to variation of parameters and undetermined coefficients. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction Units Conversion Factors Chapter 1: Classification of Differential Equations Chapter 2: Separable Differential Equations Variable Transformation u = ax + by Variable Transformation y = vx Chapter 3: Exact Differential Equations Definitions and Examples Solving Exact Differential Equations Making a Non-exact Differential Equation Exact Chapter 4: Homogenous Differential Equations Identifying Homogenous Differential Equations Solving Homogenous Differential Equations by Substitution and Separation Chapter 5: Integrating Factors General Theory of Integrating Factors Equations of Form dy/dx + p(x)y = q(x) Grouping to Simplify Solutions Solution Directly From M(x, y)dx + N(x, y)dy = 0 Chapter 6: Method of Grouping Chapter 7: Linear Differential Equations Integrating Factors Bernoulli's Equation Chapter 8: Riccati's Equation Chapter 9: Clairaut's Equation Geometrical Construction Problems Chapter 10: Orthogonal Trajectories Elimination of Constants Orthogonal Trajectories Differential Equations Derived from Considerations of Analytical Geometry Chapter 11: First Order Differential Equations: Applications I Gravity and Projectile Hooke's Law, Springs Angular Motion Over-hanging Chain Chapter 12: First Order Differential Equations: Applications II Absorption of Radiation Population Dynamics Radioactive Decay Temperature Flow from an Orifice Mixing Solutions Chemical Reactions Economics One-Dimensional Neutron Transport Suspended Cable Chapter 13: The Wronskian and Linear Independence Determining Linear Independence of a Set of Functions Using the Wronskian in Solving Differential Equations Chapter 14: Second Order Homogenous Differential Equations with Constant Coefficients Roots of Auxiliary Equations: Real Roots of Auxiliary: Complex Initial Value Higher Order Differential Equations Chapter 15: Method of Undetermined Coefficients First Order Differential Equations Second Order Differential Equations Higher Order Differential Equations Chapter 16: Variation of Parameters Solution of Second Order Constant Coefficient Differential Equations Solution of Higher Order Constant Coefficient Differential Equations Solution of Variable Coefficient Differential Equations Chapter 17: Reduction of Order Chapter 18: Differential Operators Algebra of Differential Operators Properties of Differential Operators Simple Solutions Solutions Using Exponential Shift Solutions by Inverse Method Solution of a System of Differential Equations Chapter 19: Change of Variables Equation of Type (ax + by + c)dx + (dx + ey + f)dy = 0 Substitutions for Euler Type Differential Equations Trigonometric Substitutions Other Useful Substitutions Chapter 20: Adjoint of a Differential Equation Chapter 21: Applications of Second Order Differential Equations Harmonic Oscillator Simple Pendulum Coupled Oscillator and Pendulum Motion Beam and Cantilever Hanging Cable Rotational Motion Chemistry Population Dynamics Curve of Pursuit Chapter 22: Electrical Circuits Simple Circuits RL Circuits RC Circuits LC Circuits Complex Networks Chapter 23: Power Series Some Simple Power Series Solutions May Be Expanded Finding Power Series Solutions Power Series Solutions for Initial Value Problems Chapter 24: Power Series about an Ordinary Point Initial Value Problems Special Equations Taylor Series Solution to Initial Value Problem Chapter 25: Power Series about a Singular Point Singular Points and Indicial Equations Frobenius Method Modified Frobenius Method Indicial Roots: Equal Special Equations Chapter 26: Laplace Transforms Exponential Order Simple Functions Combination of Simple Functions Definite Integral Step Functions Periodic Functions Chapter 27: Inverse Laplace Transforms Partial Fractions Completing the Square Infinite Series Convolution Chapter 28: Solving Initial Value Problems by Laplace Transforms Solutions of First Order Initial Value Problems Solutions of Second Order Initial Value Problems Solutions of Initial Value Problems Involving Step Functions Solutions of Third Order Initial Value Problems Solutions of Systems of Simultaneous Equations Chapter 29: Second Order Boundary Value Problems Eigenfunctions and Eigenvalues of Boundary Value Problem Chapter 30: Sturm-Liouville Problems Definitions Some Simple Solutions Properties of Sturm-Liouville Equations Orthonormal Sets of Functions Properties of the Eigenvalues Properties of the Eigenfunctions Eigenfunction Expansion of Functions Chapter 31: Fourier Series Properties of the Fourier Series Fourier Series Exppansions Sine and Cosine Expansions Chapter 32: Bessel and Gamma Functions Properties of the Gamma Function Solutions to Bessel's Equation Chapter 33: Systems of Ordinary Differential Equations Converting Systems of Ordinary Differential Equations Solutions of Ordinary Differential Equation Systems Matrix Mathematics Finding Eigenvalues of a Matrix Converting Systems of Ordinary Differential Equations into Matrix Form Calculating the Exponential of a Matrix Solving Systems by Matrix Methods Chapter 34: Simultaneous Linear Differential Equations Definitions Solutions of 2 x 2 Systems Checking Solution and Linear Independence in Matrix Form Solution of 3 x 3 Homogenous System Solution of Non-homogenous System Chapter 35: Method of Perturbation Chapter 36: Non-Linear Differential Equations Reduction of Order Dependent Variable Missing Independent Variable Missing Dependent and Independent Variable Missing Factorization Critical Points Linear Systems Non-Linear Systems Liapunov Function Analysis Second Order Equation Perturbation Series Chapter 37: Approximation Techniques Graphical Methods Successive Approximation Euler's Method Modified Euler's Method Chapter 38: Partial Differential Equations Solutions of General Partial Differential Equations Heat Equation Laplace's Equation One-Dimensional Wave Equation Chapter 39: Calculus of Variations Index WHAT THIS BOOK IS FOR Students have generally found differential equations a difficult subject to understand and learn. Despite the pub.
Building on the success of its first five editions, the Sixth Edition of the market-leading text explores the important principles and real-world applications of plane, coordinate, and solid geometry. Strongly influenced by both NCTM and AMATYC standards, the text includes intuitive, inductive, and deductive experiences in its explorations. Goals of the authors for the students include a comprehensive development of the vocabulary of geometry, an intuitive and inductive approach to development of principles, and the strengthening of deductive skills that leads to both verification of geometric theories and the solution of geometry-based real world applications. Updates in this edition include the addition of 150 new problems, new applications, new Discover! activities and examples and additional material on select topics such as parabolas and a Three-Dimensional Coordinate System. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Best Books