Describes the quadrilateral shape and different things that you can make with it.
Describes the properties of polygons in mathematics and the types of polygons seen in everyday life.
Introduces the properties of a circle in mathematics and displays everyday items that are circles.
Describes the properties of triangles in mathematics and everyday objects shaped like triangles.
Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​
This book was written for high school students and teachers who love exploring beyond standard math curricula for a deeper understanding of the principles and applications of mathematics. It is also for anyone who loves the pursuit of a problem solution, including both professional and amateur mathematicians. The vehicle that transports us through this exploration is the study and solution of classical and advanced math problems. As a high school math student, an engineer, a businessman and, ultimately, a high school math teacher, I collected and created math problems and solutions that can be used for advanced study. Some of the problems may be very familiar to you; some may not. A few may be quite easy to do; others will take more time. Included are classical proofs and their extensions that are often omitted in today's curricula. Beyond the pure enjoyment of this exploration, we also attempt to find a "deeper understanding" of the math. We address four larger aspects of "understanding," namely: convention, evidence, perspective and connection. A portion of these aspects is addressed in the solutions, themselves. The rest is in comments, which come after the solutions. The comments range widely, including: additional points regarding the math itself, historical factoids, linguistics, suggestions for teachers, some personal experiences regarding the material, etc. Readers who only skim the problems and solutions might still find the applications and comments quite interesting. It is hoped that this book will assist teachers and students alike in exploring the subject of mathematics in a new way, whether using material that is thousands of years old, or recently developed. Each problem can be used as a single assignment, done in a few minutes, or a term project that could require intuition, technique, research and/or fortitude (to plow through it). The material can be adapted for use in the standard classroom, subject to students' ability and the constrictions of uniform curricula. It is, perhaps, more applicable to classrooms with the freedom to experiment with project learning and with longer assignment periods. School math clubs or math teams might find this text a handy reference to hone skills, learn new techniques and satisfy the quest for more exciting material beyond the routine. Although the primary focus here is the application of math principles to math problems, these studies are extended to interdisciplinary examples in the sciences, engineering, finance, social studies, etc. The subject material itself is organized into groups. There are twenty-two geometry/trigonometry problems, many of which are "classic proofs." Though some have been forgotten or ignored at large, they are offered here with some new ideas and approaches. There are ten algebra problems, all of which are extensions of a standard curriculum, and offer fresh insights when studied as a group. Statistics, the newest subject to be added to the high school curriculum, has three problems. And calculus, which is not always studied in high schools, has five problems.
This book explains and demonstrates the teaching strategy of asking learners to construct their own examples of mathematical objects. The authors show that the creation of examples can involve transforming and reorganizing knowledge and that, although this is usually done by authors and teachers, if the responsibility for making examples is transferred to learners, their knowledge structures can be developed and extended. A multitude of examples to illustrate this is provided, spanning primary, secondary, and college levels. Readers are invited to learn from their own past experience augmented by tasks provided in the book, and are given direct experience of constructing examples through a collection of many tasks at many levels. Classroom stories show the practicalities of introducing such shifts in mathematics education. The authors examine how their approach relates to improving the learning of mathematics and raise future research questions. *Based on the authors' and others' theoretical and practical experience, the book includes a combination of exercises for the reader, practical applications for teaching, and solid scholarly grounding. *The ideas presented are generic in nature and thus applicable across every phase of mathematics teaching and learning. *Although the teaching methods offered are ones that engage learners imaginatively, these are also applied to traditional approaches to mathematics education; all tasks offered in the book are within conventional mathematics curriculum content. Mathematics as a Constructive Activity: Learners Generating Examples is intended for mathematics teacher educators, mathematics teachers, curriculum developers, task and test designers, and classroom researchers, and for use as a text in graduate-level mathematics education courses.
Mathematics is in the unenviable position of being simultaneously one of the most important school subjects for today's children to study and one of the least well understood. Its reputation is awe-inspiring. Everybody knows how important it is and everybody knows that they have to study it. But few people feel comfortable with it; so much so that it is socially quite acceptable in many countries to confess ignorance about it, to brag about one's incompe tence at doing it, and even to claim that one is mathophobic! So are teachers around the world being apparently legal sadists by inflicting mental pain on their charges? Or is it that their pupils are all masochists, enjoying the thrill of self-inflicted mental torture? More seriously, do we really know what the reasons are for the mathematical activity which goes on in schools? Do we really have confidence in our criteria for judging what's important and what isn't? Do we really know what we should be doing? These basic questions become even more important when considered in the context of two growing problem areas. The first is a concern felt in many countries about the direction which mathematics education should take in the face of the increasing presence of computers and calculator-related technol ogy in society.
Erinnern wir uns nicht alle mit Schrecken an die ratlosen Momente vor der Tafel im Matheunterricht? Mit Kurvendiskussionen und Dreisatz dürften jedenfalls nur wenige Spaß und Spannung verbinden... Bis jetzt! Denn nun wagt sich Alex Bellos in den Kaninchenbau der Mathematik: in das Reich von Geometrie und Algebra, von Wahrscheinlichkeitsrechnung, Statistik und logischen Paradoxa. Auf der anderen Seite des Erdballs, am Amazonas, zählen die Mitglieder des Indianerstammes der Munduruku nur bis fünf und halten die Vorstellung, dass dies nicht genügen solle, für reichlich lächerlich. Bei uns in Deutschland dagegen finden jährlich die Meisterschaften der besten Kopfrechner der Welt statt - 2010 wurde in Magdeburg eine elfjährige Inderin zur Nummer eins unter den "Mathleten" gekürt. Die Mathe-Weltmeisterin unter den Tieren ist hingegen die Schimpansin Ai, die Alex Bellos im japanischen Inuyama aufspürt und über deren Rechenkünste er nur staunen kann. Auch wenn er von den bahnbrechenden Überlegungen Euklids erzählt oder erklärt, warum man in Japan seine Visitenkarten keinesfalls zu Dodekaedern falten sollte - Bellos führt uns durch das wahrhaft erstaunliche Reich der Zahlen und bringt uns eine komplexe Wissenschaft spielerisch nahe. Mit seiner Mischung aus spannender Reportage, Wissenschaftsgeschichte und mathematischen Kabinettstückchen erbringt er souverän den Beweis, dass die Gleichung Mathematik = Langeweile eindeutig nicht wahr ist. Quod erat demonstrandum.
In a new edition, fully revised and updated to reflect key new curriculum topics and methods, Maths for Mums and Dads guides you through the basics of primary school maths and covers the dilemmas and problems you are likely to be confronted with, including: * number bonds, place value and decimals * long multiplication and division * fractions, percentages and decimals * basic geometry, shapes, symmetry and angles * data-handling, combinations and chance Complete with sample questions, mock exam papers and examples of children's errors, Maths for Mums and Dads will challenge and reassure in equal measure.
Der Leitfaden Geometrie führt Lehramtsstudierende in zentrale Teilgebiete der Geometrie ein. Durchgängige Orientierung an Erkenntnissen der Lernpsychologie und Textproduktion, beispielorientiertes Entdecken mathematischer Sätze und Beweise, Motivation durch interessante Quereinstiege und vielfältige Bezüge zu Alltagsfragestellungen kennzeichnen die Konzeption des Leitfadens Geometrie. In der vorliegenden 6. Auflage wurde das Übungsangebot vergrößert und weitere Hinweise zum selbständigen und vernetzenden Lernen eingefügt.
Was war noch mal die Catalan’sche Vermutung? Und woher kommt eigentlich das Wurzelsymbol? Was hat die Zahl Pi mit dem Sternenhimmel zu tun? Wer erfand das Gleichheitszeichen? Der britische Matheguru Ian Stewart breitet in diesem Band Schätze aus, die er in Jahrzehnten gesammelt hat: über 180 interessante Matherätsel, Lösungen, Spiele, Tricks, Geschichten, Anekdoten und Logeleien. Zudem ist Stewarts Schatztruhe mit interessanten historischen Exkursen angereichert, zum Beispiel einer kurzen Einführung in das Rechnen der Maya und der alten Ägypter und auch in die Vergangenheit unseres eigenen Rechnens: Wer erfand das Gleichheitszeichen – und warum? Ein Buch zum Blättern und Stöbern, zum Spaßhaben und Dazulernen, für Laien und für Fortgeschrittene.
Since 1962, Contemporary Authors has been an authoritative and comprehensive source of bibliographic and biographical information on important authors of the 20th century. This reference allows the user to access entries by author name, title of work or specific personal data.
Full, authoritative history of the techniques for dealing with geometric equations covers development of projective geometry from ancient to modern times, explaining the original works. 1940 edition.

Best Books