Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well as supporting small robust form factors. Ultimately, client systems are optimizing for best performance/power ratio as well as performance/cost ratio. SSDs promise to address both enterprise and client storage requirements by drastically improving performance while at the same time reducing power. Inside Solid State Drives walks the reader through all the main topics related to SSDs: from NAND Flash to memory controller (hardware and software), from I/O interfaces (PCIe/SAS/SATA) to reliability, from error correction codes (BCH and LDPC) to encryption, from Flash signal processing to hybrid storage. We hope you enjoy this tour inside Solid State Drives.
This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, from LDPC Soft Information to power, from Flash aging to FTL. SSD simulators are also addressed in a broader context in this book, i.e. the analysis of what happens when SSDs are connected to the OS (Operating System) and to the end-user application (for example, a database search). The authors walk the reader through the full simulation flow of a real system-level by combining SSD Explorer with the QEMU virtual platform. The reader will be impressed by the level of know-how and the combination of models that such simulations are asking for.
Digital photography, MP3, digital video, etc. make extensive use of NAND-based Flash cards as storage media. To realize how much NAND Flash memories pervade every aspect of our life, just imagine how our recent habits would change if the NAND memories suddenly disappeared. To take a picture it would be necessary to find a film (as well as a traditional camera...), disks or even magnetic tapes would be used to record a video or to listen a song, and a cellular phone would return to be a simple mean of communication rather than a multimedia console. The development of NAND Flash memories will not be set down on the mere evolution of personal entertainment systems since a new killer application can trigger a further success: the replacement of Hard Disk Drives (HDDs) with Solid State Drives (SSDs). SSD is made up by a microcontroller and several NANDs. As NAND is the technology driver for IC circuits, Flash designers and technologists have to deal with a lot of challenges. Therefore, SSD (system) developers must understand Flash technology in order to exploit its benefits and countermeasure its weaknesses. Inside NAND Flash Memories is a comprehensive guide of the NAND world: from circuits design (analog and digital) to Flash reliability (including radiation effects), from testing issues to high-performance (DDR) interface, from error correction codes to NAND applications like Flash cards and SSDs.
Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.
This book constitutes the proceedings of the 6th International Conference on Advances in Information Technology, IAIT 2013, held in Bangkok, Thailand, in December 2013. The 23 revised papers presented in this volume were carefully reviewed and selected from numerous submissions. They deal with all areas related to applied information technology.
This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.
The new multimedia standards (for example, MPEG-21) facilitate the seamless integration of multiple modalities into interoperable multimedia frameworks, transforming the way people work and interact with multimedia data. These key technologies and multimedia solutions interact and collaborate with each other in increasingly effective ways, contributing to the multimedia revolution and having a significant impact across a wide spectrum of consumer, business, healthcare, education, and governmental domains. Multimedia and Ubiquitous Engineering provides an opportunity for academic and industry professionals to discuss recent progress in the area of multimedia and ubiquitous environment including models and systems, new directions, novel applications associated with the utilization and acceptance of ubiquitous computing devices and systems.
Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.
This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.
Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience
The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined. Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based product development process. The Performance Indicator methodology is applied to demonstrate the importance of hidden memory parameters for a successful product and system development roadmap. Flash Memories offers an opportunity to enhance your understanding of product development key topics such as: · Reliability optimization of flash memories is all about threshold voltage margin understanding and definition; · Product performance parameter are analyzed in-depth in all aspects in relation to the threshold voltage operation window; · Technical characteristics are translated into quantitative performance indicators; · Performance indicators are applied to identify and quantify product and technology innovation within adjacent areas to fulfill the application requirements with an overall cost optimized solution; · Cost, density, performance and durability values are combined into a common factor – performance indicator - which fulfills the application requirements
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.
Can you imagine life without your cell phone, laptop, digital camera, iPod, BlackBerry, flat-screen TV, or DVD player? The skyrocketing demand for devices that provide simple, immediate access to large amounts of content is driving required digital storage capacity to unprecedented levels. Designing digital storage into consumer electronics is crucial to the performance and cost of these devices. However, as our requirements for digital content storage grow, so does the formidable difficulty of implementing design solutions that are rugged, long-lasting, power-miserly, secure, network-accessible and can still fit in the palm of your hand! This book provides the background necessary to understand common digital storage devices and media. It helps readers decide which methods of storage work best for which kinds of devices, and then teaches designers how to successfully integrate them into consumer products. * Presents best practices for selecting, integrating, and using storage devices to achieve higher performance, greater reliability and lower cost * Teardown photos provide rare visuals of the "guts" of the devices discussed * Covers hot topics including flash memory, DVRs, Apple iPods, home networks, and automotive electronics, from basic layouts to standards, advanced features, and exciting growth opportunities
This book provides a comprehensive overview of contemporary issues in complementary metal-oxide semiconductor (CMOS) device design, describing how to overcome process-induced random variations such as line-edge-roughness, random-dopant-fluctuation, and work-function variation, and the applications of novel CMOS devices to cache memory (or Static Random Access Memory, SRAM). The author places emphasis on the physical understanding of process-induced random variation as well as the introduction of novel CMOS device structures and their application to SRAM. The book outlines the technical predicament facing state-of-the-art CMOS technology development, due to the effect of ever-increasing process-induced random/intrinsic variation in transistor performance at the sub-30-nm technology nodes. Therefore, the physical understanding of process-induced random/intrinsic variations and the technical solutions to address these issues plays a key role in new CMOS technology development. This book aims to provide the reader with a deep understanding of the major random variation sources, and the characterization of each random variation source. Furthermore, the book presents various CMOS device designs to surmount the random variation in future CMOS technology, emphasizing the applications to SRAM.
The topic of this book is the use of scintillating materials in the detection of ionising radiation for medical imaging. The text surveys the state of the art in radiation detectors for medical imaging, followed by an in-depth review of all aspects of the use of scintillating materials. Also included are detailed discussion of ways to improve the performance of existing scintillating materials and completely novel uses of scintillating materials.
This open access book was prepared as a Final Publication of the COST Action IC1304 “Autonomous Control for a Reliable Internet of Services (ACROSS)”. The book contains 14 chapters and constitutes a show-case of the main outcome of the Action in line with its scientific goals. It will serve as a valuable reference for undergraduate and post-graduate students, educators, faculty members, researchers, engineers, and research strategists working in this field. The explosive growth of the Internet has fundamentally changed the global society. The emergence of concepts like SOA, SaaS, PaaS, IaaS, NaaS, and Cloud Computing in general has catalyzed the migration from the information-oriented Internet into an Internet of Services (IoS). This has opened up virtually unbounded possibilities for the creation of new and innovative services that facilitate business processes and improve the quality of life. However, this also calls for new approaches to ensuring the quality and reliability of these services. The objective of this book is, by applying a systematic approach, to assess the state-of-the-art and consolidate the main research results achieved in this area.
This book deals with modeling and implementation of high performance, current-steering D/A-converters for digital transceivers in nanometer CMOS technology. In the first part, the fundamental performance limitations of current-steering DACs are discussed. Based on simplified models, closed-form expressions for a number of basic non-ideal effects are derived and tested. With the knowledge of basic performance limits, the converter and system architecture can be optimized in an early design phase, trading off circuit complexity, silicon area and power dissipation for static and dynamic performance. The second part describes four different current-steering DAC designs in standard 130 nm CMOS. The converters have a resolution in the range of 12-14 bits for an analog bandwidth between 2.2 MHz and 50 MHz and sampling rates from 100 MHz to 350 MHz. Dynamic-Element-Matching (DEM) and advanced dynamic current calibration techniques are employed to minimize the required silicon area.
The large scale integration and planar scaling of individual system chips is reaching an expensive limit. If individual chips now, and later terrabyte memory blocks, memory macros, and processing cores, can be tightly linked in optimally designed and processed small footprint vertical stacks, then performance can be increased, power reduced and cost contained. This book reviews for the electronics industry engineer, professional and student the critical areas of development for 3D vertical memory chips including: gate-all-around and junction-less nanowire memories, stacked thin film and double gate memories, terrabit vertical channel and vertical gate stacked NAND flash, large scale stacking of Resistance RAM cross-point arrays, and 2.5D/3D stacking of memory and processor chips with through-silicon-via connections now and remote links later. Key features: Presents a review of the status and trends in 3-dimensional vertical memory chip technologies. Extensively reviews advanced vertical memory chip technology and development Explores technology process routes and 3D chip integration in a single reference
For the technological progress in communication technology it is necessary that the advanced studies in circuit and software design are accompanied with recent results of the technological research and physics in order to exceed its limitations. This book is a guide which treats many components used in mobile communications, and in particular focuses on non-volatile memories. It emerges following the conducting line of the non-volatile memory in the wireless system: On the one hand it develops the foundations of the interdisciplinary issues needed for design analysis and testing of the system. On the other hand it deals with many of the problems appearing when the systems are realized in industrial production. These cover the difficulties from the mobile system to the different types of non-volatile memories. The book explores memory cards, multichip technologies, and algorithms of the software management as well as error handling. It also presents techniques of assurance for the single components and a guide through the Datasheet lectures.
This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.

Best Books