A graduate level text in functional analysis, with an emphasis on Banach algebras. Based on lectures given for Part III of the Cambridge Mathematical Tripos, the text will assume a familiarity with elementary real and complex analysis, and some acquaintance with metric spaces, analytic topology and normed spaces (but not theorems depending on Baire category, or any version of the Hahn-Banach theorem).
This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.
This text is based on lectures given by the author at the advanced undergraduate and graduate levels in Measure Theory, Functional Analysis, Banach Algebras, Spectral Theory (of bounded and unbounded operators), Semigroups of Operators, Probability and Mathematical Statistics, and Partial Differential Equations. The first 10 chapters discuss theoretical methods in Measure Theory and Functional Analysis, and contain over 120 end of chapter exercises. The final two chapters apply theory to applications in Probability Theory and Partial Differential Equations. The Measure Theory chapters discuss the Lebesgue-Radon-Nikodym theorem which is given the Von Neumann Hilbert space proof. Also included are the relatively advanced topics of Haar measure, differentiability of complex Borel measures in Euclidean space with respect to Lebesgue measure, and the Marcinkiewicz' interpolation theorem for operators between Lebesgue spaces. The Functional Analysis chapters cover the usual material on Banach spaces, weak topologies, separation, extremal points, the Stone-Weierstrass theorem, Hilbert spaces, Banach algebras, and Spectral Theory for both bounded and unbounded operators. Relatively advanced topics such as the Gelfand-Naimark-Segal representation theorem and the Von Neumann double commutant theorem are included. The final two chapters deal with applications, where the measure theory and functional analysis methods of the first ten chapters are applied to Probability Theory and the Theory of Distributions and PDE's. Again, some advanced topics are included, such as the Lyapounov Central Limit theorem, the Kolmogoroff "Three Series theorem", the Ehrenpreis-Malgrange-Hormander theorem on fundamental solutions, and Hormander's theory of convolution operators. The Oxford Graduate Texts in Mathematics series aim is to publish textbooks suitable for graduate students in mathematics and its applications. The level of books may range from some suitable for advanced undergraduate courses at one end, to others of interest to research workers. The emphasis is on texts of high mathematical quality in active areas, particularly areas that are not well represented in the literature at present.
The book provides a modern introduction to a central part of mathematical analysis. It can be used as a self-contained textbook for beginner courses in functional analysis. In its last chapter recent results from the theory of Fréchet spaces are presented which so far have not been available in book form in English. This part of the book can be used in seminars and for gaining access to this active area of research.
Introduction to important topics in functional analysis from leading researchers. Ideal for graduate students.
Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing reversibility means that researchers who encounter the concept may be unaware of related work in other fields. This text is the first to make reversibility the focus of attention. The authors fix standard notation and terminology, establish the basic common principles, and illustrate the impact of reversibility in such diverse areas as group theory, differential and analytic geometry, number theory, complex analysis and approximation theory. As well as showing connections between different fields, the authors' viewpoint reveals many open questions, making this book ideal for graduate students and researchers. The exposition is accessible to readers at the advanced undergraduate level and above.
This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.
This textbook is an introduction to functional analysis suited to final year undergraduates or beginning graduates. Its various applications of Hilbert spaces, including least squares approximation, inverse problems, and Tikhonov regularization, should appeal not only to mathematicians interested in applications, but also to researchers in related fields. Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.
This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.
Functional analysis arose from traditional topics of calculus and integral and differential equations. This accessible text by an internationally renowned teacher and author starts with problems in numerical analysis and shows how they lead naturally to the concepts of functional analysis. Suitable for advanced undergraduates and graduate students, this book provides coherent explanations for complex concepts. Topics include Banach and Hilbert spaces, contraction mappings and other criteria for convergence, differentiation and integration in Banach spaces, the Kantorovich test for convergence of an iteration, and Rall's ideas of polynomial and quadratic operators. Numerous examples appear throughout the text.
In the past century, different branches of mathematics have become more widely separated. Yet, there is an essential unity to mathematics which still springs up in fascinating ways to solve interdisciplinary problems. This text provides a bridge between the subjects of algebraic topology, including differential topology, and geometry. It is a survey book dedicated to a large audience of researchers and graduate students in these areas. Containing a generalintroduction to the algebraic theory of rational homotopy and giving concrete applications of algebraic models to the study of geometrical problems, mathematicians in many areas will find subjects that are of interest to them in the book.
Real Analysis is indispensable for in-depth understanding and effective application of methods of modern analysis. This concise and friendly book is written for early graduate students of mathematics or of related disciplines hoping to learn the basics of Real Analysis with reasonable ease. The essential role of Real Analysis in the construction of basic function spaces necessary for the application of Functional Analysis in many fields of scientific disciplines is demonstrated with due explanations and illuminating examples. After the introductory chapter, a compact but precise treatment of general measure and integration is taken up so that readers have an overall view of the simple structure of the general theory before delving into special measures. The universality of the method of outer measure in the construction of measures is emphasized because it provides a unified way of looking for useful regularity properties of measures. The chapter on functions of real variables sits at the core of the book; it treats in detail properties of functions that are not only basic for understanding the general feature of functions but also relevant for the study of those function spaces which are important when application of functional analytical methods is in question. This is then followed naturally by an introductory chapter on basic principles of Functional Analysis which reveals, together with the last two chapters on the space of p-integrable functions and Fourier integral, the intimate interplay between Functional Analysis and Real Analysis. Applications of many of the topics discussed are included to motivate the readers for further related studies; these contain explorations towards probability theory and partial differential equations.
The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.
Beginning with the concept of random processes and Brownian motion and building on the theory and research directions in a self-contained manner, this book provides an introduction to stochastic analysis for graduate students, researchers and applied scientists interested in stochastic processes and their applications.
Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.
Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include embeddability of locally finite metric spaces into Banach spaces is finitely determined, constructions of embeddings, distortion in terms of Poincaré inequalities, constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees, Banach spaces which do not admit coarse embeddings of expanders, structure of metric spaces which are not coarsely embeddable into a Hilbert space, applications of Markov chains to embeddability problem, metric characterizations of properties of Banach spaces, and Lipschitz free spaces.
An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.
' This book is essential reading for experts in the theory of operator spaces, and for those who want to learn the banach space style advances of the last decade in operator spaces.' Bulletin of the LMSThis book combines an elementary introduction to the theory of 'quantized Banach spaces' with a discussion of some of its most surprising non-classical aspects. Only elementary notions of functional analysis are used, hence the book will be accessible to a wide range of researchers in analysis, mathematical physics, and quantum computation.
This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.

Best Books