Discover the definitive guide to crafting lightning-fast data processing for distributed systems with Apache Flink About This Book Build your expertize in processing real-time data with Apache Flink and its ecosystem Gain insights into the working of all components of Apache Flink such as FlinkML, Gelly, and Table API filled with real world use cases Exploit Apache Flink's capabilities like distributed data streaming, in-memory processing, pipelining and iteration operators to improve performance. Solve real world big-data problems with real time in-memory and disk-based processing capabilities of Apache Flink. Who This Book Is For Big data developers who are looking to process batch and real-time data on distributed systems. Basic knowledge of Hadoop and big data is assumed. Reasonable knowledge of Java or Scala is expected. What You Will Learn Learn how to build end to end real time analytics projects Integrate with existing big data stack and utilize existing infrastructure Build predictive analytics applications using FlinkML Use graph library to perform graph querying and search. Understand Flink's - "Streaming First" architecture to implementing real streaming applications Learn Flink Logging and Monitoring best practices in order to efficiently design your data pipelines Explore the detailed processes to deploy Flink cluster on Amazon Web Services(AWS) and Google Cloud Platform (GCP). In Detail With the advent of massive computer systems, organizations in different domains generate large amounts of data on a real-time basis. The latest entrant to big data processing, Apache Flink, is designed to process continuous streams of data at a lightning fast pace. This book will be your definitive guide to batch and stream data processing with Apache Flink. The book begins with introducing the Apache Flink ecosystem, setting it up and using the DataSet and DataStream API for processing batch and streaming datasets. Bringing the power of SQL to Flink, this book will then explore the Table API for querying and manipulating data. In the latter half of the book, readers will get to learn the remaining ecosystem of Apache Flink to achieve complex tasks such as event processing, machine learning, and graph processing. The final part of the book would consist of topics such as scaling Flink solutions, performance optimization and integrating Flink with other tools such as ElasticSearch. Whether you want to dive deeper into Apache Flink, or want to investigate how to get more out of this powerful technology, you'll find everything you need inside. Style and approach This book is a comprehensive guide that covers advanced features of the Apache Flink, and communicates them with a practical understanding of the underlying concepts for how, when, and why to use them.
Designing and writing a real-time streaming publication with Apache Apex About This Book Get a clear, practical approach to real-time data processing Program Apache Apex streaming applications This book shows you Apex integration with the open source Big Data ecosystem Who This Book Is For This book assumes knowledge of application development with Java and familiarity with distributed systems. Familiarity with other real-time streaming frameworks is not required, but some practical experience with other big data processing utilities might be helpful. What You Will Learn Put together a functioning Apex application from scratch Scale an Apex application and configure it for optimal performance Understand how to deal with failures via the fault tolerance features of the platform Use Apex via other frameworks such as Beam Understand the DevOps implications of deploying Apex In Detail Apache Apex is a next-generation stream processing framework designed to operate on data at large scale, with minimum latency, maximum reliability, and strict correctness guarantees. Half of the book consists of Apex applications, showing you key aspects of data processing pipelines such as connectors for sources and sinks, and common data transformations. The other half of the book is evenly split into explaining the Apex framework, and tuning, testing, and scaling Apex applications. Much of our economic world depends on growing streams of data, such as social media feeds, financial records, data from mobile devices, sensors and machines (the Internet of Things - IoT). The projects in the book show how to process such streams to gain valuable, timely, and actionable insights. Traditional use cases, such as ETL, that currently consume a significant chunk of data engineering resources are also covered. The final chapter shows you future possibilities emerging in the streaming space, and how Apache Apex can contribute to it. Style and approach This book is divided into two major parts: first it explains what Apex is, what its relevant parts are, and how to write well-built Apex applications. The second part is entirely application-driven, walking you through Apex applications of increasing complexity.
This book constitutes selected papers from the 14th European, Mediterranean, and Middle Eastern Conference, EMCIS 2017, held in Coimbra, Portugal, in September 2017. EMCIS is focusing on approaches that facilitate the identification of innovative research of significant relevance to the IS discipline following sound research methodologies that lead to results of measurable impact. The 37 full and 16 short papers presented in this volume were carefully reviewed and selected from a total of 106 submissions. They are organized in sections on big data and Semantic Web; digital services, social media and digital collaboration; e-government; healthcare information systems; information systems security and information privacy protection; IT governance; and management and organizational issues in information systems.
There’s growing interest in learning how to analyze streaming data in large-scale systems such as web traffic, financial transactions, machine logs, industrial sensors, and many others. But analyzing data streams at scale has been difficult to do well—until now. This practical book delivers a deep introduction to Apache Flink, a highly innovative open source stream processor with a surprising range of capabilities. Authors Ellen Friedman and Kostas Tzoumas show technical and nontechnical readers alike how Flink is engineered to overcome significant tradeoffs that have limited the effectiveness of other approaches to stream processing. You’ll also learn how Flink has the ability to handle both stream and batch data processing with one technology. Learn the consequences of not doing streaming well—in retail and marketing, IoT, telecom, and banking and finance Explore how to design data architecture to gain the best advantage from stream processing Get an overview of Flink’s capabilities and features, along with examples of how companies use Flink, including in production Take a technical dive into Flink, and learn how it handles time and stateful computation Examine how Flink processes both streaming (unbounded) and batch (bounded) data without sacrificing performance
This book constitutes the workshop proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018. The 24 full papers presented were carefully selected and reviewed from numerous submissions to the two following workshops: - ICA3PP 2018 Workshop on Intelligent Algorithms for Large-scale Complex Optimization Problems - ICA3PP 2018 Workshop on Security and Privacy in Data Processing
Get started with Apache Flink, the open source framework that enables you to process streaming data--such as user interactions, sensor data, and machine logs--as it arrives. With this practical guide, you'll learn how to use Apache Flink's stream processing APIs to implement, continuously run, and maintain real-world applications. Authors Fabian Hueske, one of Flink's creators, and Vasia Kalavri, a core contributor to Flink's graph processing API (Gelly), explains the fundamental concepts of parallel stream processing and shows you how streaming analytics differs from traditional batch data analysis. Software engineers, data engineers, and system administrators will learn the basics of Flink's DataStream API, including the structure and components of a common Flink streaming application. Solve real-world problems with Apache Flink's DataStream API Set up an environment for developing stream processing applications for Flink Design streaming applications and migrate periodic batch workloads to continuous streaming workloads Learn about windowed operations that process groups of records Ingest data streams into a DataStream application and emit a result stream into different storage systems Implement stateful and custom operators common in stream processing applications Operate, maintain, and update continuously running Flink streaming applications Explore several deployment options, including the setup of highly available installations
Sie ist elegant, schlank, modern und flexibel: Die Rede ist von Scala, der neuen Programmiersprache für die Java Virtual Machine (JVM). Sie vereint die Vorzüge funktionaler und objektorientierter Programmierung, ist typsicherer als Java, lässt sich nahtlos in die Java-Welt integrieren – und eine in Scala entwickelte Anwendung benötigt oft nur einen Bruchteil der Codezeilen ihres Java-Pendants. Kein Wunder, dass immer mehr Firmen, deren große, geschäftskritische Anwendungen auf Java basieren, auf Scala umsteigen, um ihre Produktivität und die Skalierbarkeit ihrer Software zu erhöhen. Das wollen Sie auch? Dann lassen Sie sich von den Scala-Profis Dean Wampler und Alex Payne zeigen, wie es geht. Ihre Werkzeugkiste: Schon bevor Sie loslegen, sind Sie weiter, als Sie denken: Sie können Ihre Java-Programme weiter verwenden, Java-Bibliotheken nutzen, Java von Scala aus aufrufen und Scala von Java aus. Auch Ihre bevorzugten Entwicklungswerkzeuge wie NetBeans, IntelliJ IDEA oder Eclipse stehen Ihnen weiter zur Verfügung, dazu Kommandozeilen-Tools, Plugins für Editoren, Werkzeuge von Drittanbietern – und natürlich Ihre Programmiererfahrung. In Programmieren mit Scala erfahren Sie, wie Sie sich all das zunutze machen. Das Hybridmodell: Die Paradigmen "funktional" und "objektorientiert" sind keine Gegensätze, sondern ergänzen sich unter dem Scala-Dach zu einem sehr produktiven Ganzen. Nutzen Sie die Vorteile funktionaler Programmierung, wann immer sich das anbietet – und seien Sie so frei, auf die guten alten Seiteneffekte zu bauen, wenn Sie das für nötig halten. Futter für die Profis: Skalierbare Nebenläufigkeit mit Aktoren, Aufzucht und Pflege von XML mit Scala, Domainspezifische Sprachen, Tipps zum richtigen Anwendungsdesign – das sind nur ein paar der fortgeschrittenen Themen, in die Sie mit den beiden Autoren eintauchen. Danach sind Sie auch Profi im Programmieren mit Scala.
Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.
SPRING IM EINSATZ // - Spring 3.0 auf den Punkt gebracht: Die zentralen Konzepte anschaulich und unterhaltsam erklärt. - Praxis-Know-how für den Projekteinsatz: Lernen Sie Spring mit Hilfe der zahlreichen Codebeispiele aktiv kennen. - Im Internet: Der vollständige Quellcode für die Applikationen dieses Buches Das Spring-Framework gehört zum obligatorischen Grundwissen eines Java-Entwicklers. Spring 3 führt leistungsfähige neue Features wie die Spring Expression Language (SpEL), neue Annotationen für IoC-Container und den lang ersehnten Support für REST ein. Es gibt keinen besseren Weg, um sich Spring anzueignen, als dieses Buch - egal ob Sie Spring gerade erst entdecken oder sich mit den neuen 3.0-Features vertraut machen wollen. Craig Walls setzt in dieser gründlich überarbeiteten 2. Auflage den anschaulichen und praxisorientierten Stil der Vorauflage fort. Er bringt als Autor sein Geschick für treffende und unterhaltsame Beispiele ein, die das Augenmerk direkt auf die Features und Techniken richten, die Sie wirklich brauchen. Diese Auflage hebt die wichtigsten Aspekte von Spring 3.0 hervor: REST, Remote-Services, Messaging, Security, MVC, Web Flow und vieles mehr. Das finden Sie in diesem Buch: - Die Arbeit mit Annotationen, um die Konfiguration zu reduzieren - Die Arbeit mit REST-konformen Ressourcen - Spring Expression Language (SpEL) - Security, Web Flow usw. AUS DEM INHALT: Spring ins kalte Wasser, Verschalten von Beans, Die XML-Konfiguration in Spring minimalisieren, Aspektorientierung, Zugriff auf die Datenbank, Transaktionen verwalten, Webapplikationen mit Spring MVC erstellen, Die Arbeit mit Spring Web Flow, Spring absichern, Die Arbeit mit Remote-Diensten, Spring und REST, Messaging in Spring, Verwalten von Spring-Beans mit JMX
Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Docker-Container bieten eine einfache, schnelle und robuste Möglichkeit, Software zu entwickeln, zu verteilen und laufen zu lassen – besonders in dynamischen und verteilten Umgebungen. Mit diesem praktischen Leitfaden lernen Sie, warum Container so wichtig sind, was durch den Einsatz von Docker möglich ist und wie Sie es in Ihren Entwicklungsprozess einbinden. Dieses Buch ist aktuell zu Docker 1.12 und ideal für Entwickler, Operations-Techniker und Administratoren – insbesondere, wenn Sie einen DevOps-Ansatz verfolgen. Es nimmt Sie mit auf eine Reise von den Grundlagen bis zum Ausführen Dutzender Container auf einem Multi-Host-System mit Networking und Scheduling. Im Verlauf des Buches erfahren Sie, welche Schritte zum Entwickeln, Testen und Bereitstellen einer Webanwendung mit Docker notwendig sind. • Beginnen Sie mit Docker, indem Sie eine einfache Webanwendung entwickeln und bereitstellen. • Nutzen Sie Techniken aus dem Continuous Deployment, um Ihre Anwendung mehrmals pro Tag in die Produktivumgebung zu bringen. • Lernen Sie Optionen und Techniken kennen, um mehrere Container gleichzeitig zu protokollieren und zu überwachen. • Befassen Sie sich mit dem Erkennen im Netzwerk und mit Services: Wie finden sich Container gegenseitig und wie verbinden Sie sie? • Orchestrieren und clustern Sie Container, um Load Balancing zu ermöglichen, Ihr System skalierbar zu machen sowie Failovers und Scheduling umzusetzen. • Sichern Sie Ihr System, indem Sie den Prinzipien der "Defense in Depth" und dem Konzept der geringsten Rechte folgen. • Setzen Sie Container ein, um eine Microservices-Architektur aufzubauen.
Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3’s powerful features, or you’re new to big data analytics. A basic understanding of the Java programming language is required.
Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!
Romanhaft ausgeschmückte Geschichte der Gründung und Entwicklung des sozialen Netzwerks äFacebookä. Hauptperson: der mehrfache Milliardär Mark Zuckerberg.
Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You’ll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time. Understand the tradeoffs between simple and complex recommenders Collect user data that tracks user actions—rather than their ratings Predict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysis Use search technology to offer recommendations in real time, complete with item metadata Watch the recommender in action with a music service example Improve your recommender with dithering, multimodal recommendation, and other techniques
More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Best Books