David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
David Poole’s innovative book emphasizes vectors and geometric intuition from the start and better prepares students to make the transition from the computational aspects of the course to the theoretical. Designed for a one- or two-semester introductory course and written in simple, mathematical English Poole focuses his approach on benefiting student visualization and connection to the material. He offers concrete examples to engage the student before presenting abstraction, and immediately follows up theoretical discussion with further examples and an array of applications from a variety of disciplines. Students from a variety of backgrounds and learning styles benefit from Poole’s practical approach, which covers vectors and vector geometry early in order to enable students to visualize the mathematics while they are doing matrix operations. With a concrete understanding of vector geometry, students are able to visualize and understand the meaning of the calculations that they will encounter and develop mathematical maturity for thinking abstractly. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
David Poole's innovative book emphasizes vectors and geometric intuition from the start and better prepares students to make the transition from the computational aspects of the course to the theoretical. Poole covers vectors and vector geometry first to enable students to visualize the mathematics while they are doing matrix operations. With a concrete understanding of vector geometry, students are able to visualize and understand the meaning of the calculations that they will encounter. By seeing the mathematics and understanding the underlying geometry, students develop mathematical maturity and can think abstractly when they reach vector spaces. Throughout the text, Poole's direct conversational writing style connects with students, and an abundant selection of applications from a broad range of disciplines clearly demonstrates the relevance of linear algebra.
Useful Concepts and Results at the Heart of Linear Algebra A one- or two-semester course for a wide variety of students at the sophomore/junior undergraduate level A Modern Introduction to Linear Algebra provides a rigorous yet accessible matrix-oriented introduction to the essential concepts of linear algebra. Concrete, easy-to-understand examples motivate the theory. The book first discusses vectors, Gaussian elimination, and reduced row echelon forms. It then offers a thorough introduction to matrix algebra, including defining the determinant naturally from the PA=LU factorization of a matrix. The author goes on to cover finite-dimensional real vector spaces, infinite-dimensional spaces, linear transformations, and complex vector spaces. The final chapter presents Hermitian and normal matrices as well as quadratic forms. Taking a computational, algebraic, and geometric approach to the subject, this book provides the foundation for later courses in higher mathematics. It also shows how linear algebra can be used in various areas of application. Although written in a "pencil and paper" manner, the text offers ample opportunities to enhance learning with calculators or computer usage. Solutions manual available for qualifying instructors
In this innovative new Linear Algebra text, award-winning educator David Poole covers vectors and vector geometry first to enable students to visualize the mathematics while they are doing matrix operations. Rather than merely doing the calculations with no understanding of the mathematics, students will be able to visualize and understand the meaning of the calculations. By seeing the mathematics and understanding the underlying geometry, students will develop mathematical maturity and learn to think abstractly.
Dieses Buch führt anhand grundlegender Problemstellungen der linearen Algebra in das algorithmisch-numerische Denken ein. Die Beschränkung auf die lineare Algebra sichert dabei eine stärkere thematische Kohärenz als sie sonst in einführenden Vorlesungen zur Numerik zu finden ist. Die Darstellung betont die Zweckmäßigkeit von Matrixpartitionierungen gegenüber einer komponentenweisen Betrachtung, was sich nicht nur in einer übersichtlicheren Notation und kürzeren Algorithmen auszahlt, sondern angesichts moderner Computerarchitekturen auch zu signifikanten Laufzeitgewinnen führt. Die Algorithmen und begleitenden numerischen Beispiele werden in der Programmierumgebung MATLAB angegeben, zusätzlich aber in einem Anhang auch in der zukunftsweisenden, frei zugänglichen Programmiersprache Julia. Das vorliegende Buch eignet sich für eine zweistündige Vorlesung über numerische lineare Algebra ab dem zweiten Semester des Bachelorstudiengangs Mathematik.
Facts101 is your complete guide to Linear Algebra, A Modern Introduction. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.
Facts101 is your complete guide to A Modern Introduction to Linear Algebra. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
Für so manchen Zeitgenossen ist das Land Mathematien wüst und grau und der Weg, die Lineare Algebra zu verstehen, ist besonders stolpersteinig und öd. Aber haben Sie erst einmal die Grundlagen verstanden, ist der Rest nur noch halb so schwer. Mary Jane Sterling hilft Ihnen in diesem Buch auf die Sprünge. Sie erklärt Ihnen, wie Sie mit Vektoren rechnen, die Matrizenalgebra meistern, Linearkombinationen in ihre Schranken weisen, sich behende im Vektorraum bewegen, Eigenwert und Eigenvektor zu guten Freunden machen und vieles mehr. Stellen Sie mit diesem Buch Ihre Kenntnisse der Linearen Algebra auf eine solide Grundlage.
In Ihrer Hand liegt ein Lehrbuch - in sieben englischsprachigen Ausgaben praktisch erprobt - das Sie mit groem didaktischen Geschick, zudem angereichert mit zahlreichen Ubungsaufgaben, in die Grundlagen der linearen Algebra einfuhrt. Kenntnisse der Analysis werden fur das Verstandnis nicht generell vorausgesetzt, sind jedoch fur einige besonders gekennzeichnete Beispiele notig. Padagogisch erfahren, behandelt der Autor grundlegende Beweise im laufenden Text; fur den interessierten Leser jedoch unverzichtbare Beweise finden sich am Ende der entsprechenden Kapitel. Ein weiterer Vorzug des Buches: Die Darstellung der Zusammenhange zwischen den einzelnen Stoffgebieten - linearen Gleichungssystemen, Matrizen, Determinanten, Vektoren, linearen Transformationen und Eigenwerten.
Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.
This graduate level textbook covers an especially broad range of topics. The book first offers a careful discussion of the basics of linear algebra. It then proceeds to a discussion of modules, emphasizing a comparison with vector spaces, and presents a thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory, culminating in the finite dimensional spectral theorem for normal operators. The new edition has been revised and contains a chapter on the QR decomposition, singular values and pseudoinverses, and a chapter on convexity, separation and positive solutions to linear systems.
Important though the general concepts and propositions may be with which the modem and industrious passion for axiomatizing and generalizing has presented us, in algebra perhaps more than anywhere else, nevertheless I am convinced that the special problems in all their complexity constitute the stock and core of mathematics, and that to master their difficulties requires on the whole the harder labor. HERMANN WEYL Die Arbeit an diesem Buch begann vor etwa zwanzig Jahren mit Aufzeichnungen zur Ergänzung meiner Algebravorlesungen. Ich wollte einige konkrete Themen, wie Symmetrie, lineare Gruppen und quadratische Zahlkörper, ausführlicher be­ handeln als dies im vorgesehenen Text der Fall war, und darüberhinaus wollte ich den Schwerpunkt in der Gruppentheorie von den Permutationsgruppen auf Matrixgruppen verlagern. Ein anderes ständig wiederkehrendes Thema, nämlich Gitter, sind spontan aufgetaucht. Ich hoffte, der konkrete Stoff könne das Interesse der Studenten wecken und gleichzeitig die Abstraktionen verständlicher machen, kurz gesagt, sie sollten weiter kommen, indem sie beides gleichzeitig lernten. Das bewährte sich gut. Es dauerte einige Zeit, bis ich entschieden hatte, welche Themen ich behandeln wollte, und allmählich verteilte ich mehr und mehr Aufzeichnungen und ging schließlich dazu über, die ganze Vorlesung mit diesem Skript zu bestrei­ ten. Auf diese Weise ist ein Buch entstanden, das, wie ich meine, etwas anders ist als die existierenden Bücher. Allerdings haben mir die Probleme, die ich damit hatte, die einzelnen Teile des Buches zu einem Ganzen zusammenzufügen, einige Kopfschmerzen bereitet; ich kann also nicht empfehlen, auf diese Art anzufangen, ein Buch zu schreiben.
This text is a high-level introduction to the modern theory of dynamical systems; an analysis-based, pure mathematics course textbook in the basic tools, techniques, theory and development of both the abstract and the practical notions of mathematical modelling, using both discrete and continuous concepts and examples comprising what may be called the modern theory of dynamics. Prerequisite knowledge is restricted to calculus, linear algebra and basic differential equations, and all higher-level analysis, geometry and algebra is introduced as needed within the text. Following this text from start to finish will provide the careful reader with the tools, vocabulary and conceptual foundation necessary to continue in further self-study and begin to explore current areas of active research in dynamical systems.
Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications. A (Terse) Introduction to Linear Algebra is a concise presentation of the core material of the subject--those elements of linear algebra that every mathematician, and everyone who uses mathematics, should know. It goes from the notion of a finite-dimensional vector space to the canonical forms of linear operators and their matrices, and covers along the way such key topics as: systems of linear equations, linear operators and matrices, determinants, duality, and the spectral theory of operators on inner-product spaces. The last chapter offers a selection of additional topics indicating directions in which the core material can be applied. The Appendix provides all the relevant background material. Written for students with some mathematical maturity and an interest in abstraction and formal reasoning, the book is self-contained and is appropriate for an advanced undergraduate course in linear algebra.

Best Books