Orignally published: Englewood Cliffs, N.J.: Prentice-Hall, 1962.
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
Originally published: New York: Chelsea Publishing Company, 1962.
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Famous classic has introduced countless readers to symbolic logic with its thorough and precise exposition. Starts with simple symbols and conventions and concludes with the Boole-Schroeder and Russell-Whitehead systems. No special knowledge of mathematics necessary. "One of the clearest and simplest introductions to a subject which is very much alive." — Mathematics Gazette.
Dieses erste Lehrbuch zur Formalen Begriffsanalyse gibt eine systematische Darstellung der mathematischen Grundlagen und ihrer Verbindung zu Anwendungen in der Informatik, insbesondere in der Datenanalyse und Wissensverarbeitung. Das Buch vermittelt vor allem Methoden der graphischen Darstellung von Begriffssystemen, die sich in der Wissenskommunikation bestens bewährt haben. Theorie und graphische Darstellung werden dabei eng miteinander verknüpft. Die mathematischen Grundlagen werden vollständig abgehandelt und durch zahlreiche Beispiele anschaulich gemacht. Da zur Wissensverarbeitung immer stärker der Computer genutzt wird, gewinnen formale Methoden begrifflicher Analyse überall an Bedeutung. Das Buch macht die dafür grundlegende Theorie in kompakter Form zugänglich.
Concise and informal as well as systematic, this presentation on the basics of Boolean algebra has ranked among the fundamental books on the subject since its initial publication in 1963.
Vorlesungen uber die Algebra der Logik (exakte Logik) ist ein unveranderter, hochwertiger Nachdruck der Originalausgabe aus dem Jahr 1890. Hansebooks ist Herausgeber von Literatur zu unterschiedlichen Themengebieten wie Forschung und Wissenschaft, Reisen und Expeditionen, Kochen und Ernahrung, Medizin und weiteren Genres.Der Schwerpunkt des Verlages liegt auf dem Erhalt historischer Literatur.Viele Werke historischer Schriftsteller und Wissenschaftler sind heute nur noch als Antiquitaten erhaltlich. Hansebooks verlegt diese Bucher neu und tragt damit zum Erhalt selten gewordener Literatur und historischem Wissen auch fur die Zukunft bei."
Die theoretische Logik, auch mathematische oder symbolische Logik genannt, ist eine Ausdehnung der formalen Methode der Mathematik auf das Gebiet der Logik. Sie wendet für die Logik eine ähnliche Formel sprache an, wie sie zum Ausdruck mathematischer Beziehungen schon seit langem gebräuchlich ist. In der Mathematik würde es heute als eine Utopie gelten, wollte man beim Aufbau einer mathematischen Disziplin sich nur der gewöhnlichen Sprache bedienen. Die großen Fortschritte, die in der Mathematik seit der Antike gemacht worden sind, sind zum wesentlichen Teil mit dadurch bedingt, daß es gelang, einen brauchbaren und leistungsfähigen Formalismus zu finden. - Was durch die Formel sprache in der Mathematik erreicht wird, das soll auch in der theoretischen Logik durch diese erzielt werden, nämlich eine exakte, wissenschaftliche Behandlung ihres Gegenstandes. Die logischen Sachverhalte, die zwischen Urteilen, Begriffen usw. bestehen, finden ihre Darstellung durch Formeln, deren Interpretation frei ist von den Unklarheiten, die beim sprachlichen Ausdruck leicht auftreten können. Der Übergang zu logischen Folgerungen, wie er durch das Schließen geschieht, wird in seine letzten Elemente zerlegt und erscheint als formale Umgestaltung der Ausgangsformeln nach gewissen Regeln, die den Rechenregeln in der Algebra analog sind; das logische Denken findet sein Abbild in einem Logikkalkül. Dieser Kalkül macht die erfolgreiche Inangriffnahme von Problemen möglich, bei denen das rein inhaltliche Denken prinzipiell versagt. Zu diesen gehört z. B.

Best Books