Machining is one of the most important manufacturing processes. Parts manufactured by other processes often require further operations before the product is ready for application. “Machining: Fundamentals and Recent Advances” is divided into two parts. Part I explains the fundamentals of machining, with special emphasis on three important aspects: mechanics of machining, tools, and work-piece integrity. Part II is dedicated to recent advances in machining, including: machining of hard materials, machining of metal matrix composites, drilling polymeric matrix composites, ecological machining (minimal quantity of lubrication), high-speed machining (sculptured surfaces), grinding technology and new grinding wheels, micro- and nano-machining, non-traditional machining processes, and intelligent machining (computational methods and optimization). Advanced students, researchers and professionals interested or involved in modern manufacturing engineering will find the book a useful reference.
The book thoroughly illustrates the causes of various phenomena and their effects on machining practice. It includes description of machining processes outlining the merits and de-merits of various modeling approaches. Spread in 22 chapters, the book is broadly divided in four sections: 1. Machining Processes 2. Cutting Tools 3. Machine Tools 4. Automation Data on cutting parameters for machining operations and main characteristics of machine tools have been separately provided in Annexures. In addition to exhaustive theory, a number of numerical examples have been solved and arranged in various chapters. Question bank has been given at the end of every chapter. The book is a must for anyone involved in metal cutting, machining, machine tool technology, machining applications, and manufacturing processes
Machining remains a hugely important process in modern engineering and manufacturing practice, and students need to be aware of the vast host of methods and technologies available to meet all sorts of precision and surface finish requirements. Fundamentals of Machining Processes: Conventional and Nonconventional Processes is the first textbook to collect all of the major methods into a single reference, from cutting and abrasive processes to erosion, hybrid, and micromachining processes. A Solid Foundation The text begins with an introduction to the various machining processes, followed by detailed discussions of cutting tool materials and geometry, mechanics of orthogonal cutting, the various factors affecting the economics of machining, and cutting methods for both flat and cylindrical surfaces. The author then shifts focus to high-speed machining and abrasive processes, including abrasive finishing and advanced processes such as ultrasonic and abrasive jet machining. A Firm Step Forward After laying a groundwork in the conventional processes, El-Hofy delves into modern machining topics. He explains electrochemical and thermal erosion techniques, combined machining processes, and the various micromachining techniques based on the previously discusses processes. Extensive worked examples, illustrations, and homework problems reinforce a practical understanding of the concepts. Reflecting the author's more than 30 years of industrial and teaching experience, Fundamentals of Machining Processes is a resource that students will carry with them well into their careers.
New edition (previous, 1975) of a textbook for a college-level course in the principles of machine tools and metal machining. Math demands are limited to introductory calculus and that encountered in basic statics and dynamics. Topics include: operations, mechanics of cutting, temperature, tool life
In the more than 15 years since the second edition of Fundamentals of Machining and Machine Tools was published, the industry has seen many changes. Students must keep up with developments in analytical modeling of machining processes, modern cutting tool materials, and how these changes affect the economics of machining. With coverage reflecting state-of-the-art industry practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes underlying concepts, analytical methods, and economic considerations, requiring only basic mathematics and physics. This book thoroughly illustrates the causes of various phenomena and their effects on machining practice. The authors include several descriptions of modern analytical methods, outlining the strengths and weaknesses of the various modeling approaches. What's New in the Third Edition? Recent advances in super-hard cutting tool materials, tool geometries, and surface coatings Advances in high-speed machining and hard machining New trends in cutting fluid applications, including dry and minimum-quantity lubrication machining New developments in tool geometries for chip breaking and chip control Improvements in cost modeling of machining processes, including application to grinding processes Supplying abundant examples, illustrations, and homework problems, Fundamentals of Machining and Machine Tools, Third Edition is an ideal textbook for senior undergraduate and graduate students studying metal cutting, machining, machine tool technology, machining applications, and manufacturing processes.
Modern Machining Processes presents unconventional machining methods which are gradually commercial acceptance. All aspects of mechanical, electrochemical and thermal processes are comprehensively covered.Processes likeAbrasive Jet Machining Water Jet MachiningLaser Beam MachiningHot MachiningPlasma Arc Machininghave also been included. It gives a balanced account of both theory and applications, contains illustrative exercises and an extensive up-to-date bibliography. The book should be useful to students of production and mechanical engineering, as well as practising engineers.
Hard machining is a relatively recent technology that can be defined as a machining operation, using tools with geometrically defined cutting edges, of a work piece that has hardness values typically in the 45-70HRc range. This operation always presents the challenge of selecting a cutting tool insert that facilitates high-precision machining of the component, but it presents several advantages when compared with the traditional methodology based in finish grinding operations after heat treatment of work pieces. Machining of Hard Materials aims to provide the reader with the fundamentals and recent advances in the field of hard machining of materials. All the chapters are written by international experts in this important field of research. They cover topics such as: • advanced cutting tools for the machining of hard materials; • the mechanics of cutting and chip formation; • surface integrity; • modelling and simulation; and • computational methods and optimization. Machining of Hard Materials can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals in machining and related industries. It can also be used as a text for advanced undergraduate or postgraduate students studying mechanical engineering, manufacturing, or materials.
This forward-thinking, practical book provides essential information on modern machining technology for industry with emphasis on the processes used regularly across several major industries. Machining technology presents great interest for many important industries including automotive, aeronautics, aerospace, renewable energy, moulds and dies, biomedical, and many others. Machining processes are manufacturing processes in which parts are shaped by the removal of unwanted material; these processes cover several stages and are usually divided into the following categories: cutting (involving single point or multipoint cutting tools); abrasive processes (including grinding and advanced machining processes, such as EDM (electrical discharge machining), LBM (laser-beam machining), AWJM (abrasive water jet machining) and USM (ultrasonic machining). Provides essential information on modern machining technology, with emphasis on the processes used regularly across several major industries Covers several processes and outlines their many stages Contributions come from a series of international, highly knowledgeable and well-respected experts
This book focuses on the state-of-the-art developments in machining with nanomaterials. Numerous in-depth case studies illustrate the practical use of nanomaterials in industry, including how thin film nanostructures can be applied to solving machining problems and how coatings can improve tool life and reduce machining costs in an environmentally acceptable way. Chapters include discussions on, among other things: Comparisons of re-coated cutting tools and re-ground drills The modeling and machining of medical materials, particularly implants, for optimum biocompatibility including corrosion resistance, bio adhesiveness, and elasticity Recent developments in machining difficult-to-cut materials, as well as machining brittle materials using nanostructured diamond tools Spindle Speed Variation (SSV) for machining chatter suppression Nano grinding with abrasives to produce micro- and nano fluidic devices. The importance of proper design of cutting tools, including milling tools, single point turning tools, and micro cutting tools is reinforced throughout the book. This is an ideal book for engineers in industry, practitioners, students, teachers, and researchers.
In recent years, the application of composite materials hasincreased in various areas of science and technology due to theirspecial properties, namely for use in the aircraft, automotive,defence, aerospace and other advanced industries. Machiningcomposite materials is quite a complex task owing to itsheterogenity, and to the fact that reinforcements are extremelyabrasive. In modern engineering, high demands are placed oncomponents made of composites in relation to their dimensionalprecision as well as their surface quality. Due to these potentialapplications, there is a great need to understand the questionsassociated with machining composite materials. This book aims to provide the fundamentals and the recentadvances in the machining of composite materials (polymers, metalsand ceramics) for modern manufacturing engineering. The three partsof the book cover the machining of polymeric, metal and ceramicmatrix composites. This book can be used as a text book for the final year of anundergraduate engineering course or for those studyingmachining/composites at the postgraduate level. It can also serveas a useful work of reference for academics, manufacturing andmaterials researchers, manufacturing and mechanical engineers, andprofessionals in composite technology and related industries.
The Book Is Intended To Serve As A Textbook For The Final And Pre-Final Year B.Tech. Students Of Mechanical, Production, Aeronautical And Textile Engineering Disciplines. It Can Be Used Either For A One Or A Two Semester Course. The Book Covers The Main Areas Of Interest In Metal Machining Technology Namely Machining Processes, Machine Tools, Metal Cutting Theory And Cutting Tools. Modern Developments Such As Numerical Control, Computer-Aided Manufacture And Non-Conventional Processes Have Also Been Treated. Separate Chapters Have Been Devoted To The Important Topics Of Machine Tool Vibration, Surface Integrity And Machining Economics. Data On Recommended Cutting Speeds, Feeds And Tool Geometry For Various Operations Has Been Incorporated For Reference By The Practising Engineer.Salient Features Of Second Edition * Two New Chapters Have Been Added On Nc And Cnc Machines And Part Programming. * All Chapters Have Been Thoroughly Revised And Updated With New Information. * More Solved Examples Have Been Added. * New Material On Tool Technology. * Improved Quality Of Figures And More Photographs.
This text, developed at MIT's laboratory for Manufacturing and Productivity, provides an overview of manufacturing from the ground up. Each topic is discussed in terms of the four fundamental manufacturing attributes: cost, rate, flexibility, and quality, and the presentation emphasizes both theoretical developments and practical applications. This new edition has been thoroughly updated throughout and includes a new section on CAD CAM and CNC technologies, virtual reality, metrology, process planning, new tools and software, and simulation.
Written by an expert with over 40 years of experience in research and teaching machining and related topics, this new edition textbook presents the principles and theories of material removal and applications for conventional, nonconventional and hybrid machining processes. The new edition is ideal for undergraduate students in production, materials, industrial, mechatronics, marine, mechanical, and manufacturing engineering programs, and also useful for graduate programs related to higher-level machining topics, as well as professional engineers and technicians. All chapters are updated, with additional chapters covering new topics of composite machining, vibration assisted machining and mass finishing operations.
This book teaches the fundamentals of CNC machining. Topics include safety, CNC tools, cutting speeds and feeds, coordinate systems, G-codes, 2D, 3D and Turning toolpaths and CNC setups and operation. Emphasis is on using best practices as related to modern CNC and CAD/CAM. This book is particularly well-suited to persons using CNC that do not have a traditional machining background.

Best Books