New discoveries of ancient vertebrates, filling in gaps in the fossil record, are quickly eroding the traditionally recognized differences between the principal groups of vertebrates—for example, between dinosaurs and birds—and radically changing our understanding of the evolutionary history of the major group of animals to which our species belongs. This book describes this changing scientific landscape and contributes to the revolution in our knowledge of the developmental mechanisms that underlie evolutionary transformation.
How did flying birds evolve from running dinosaurs, terrestrial trotting tetrapods from swimming fish, and whales return to swim in the sea? These are some of the great transformations in the history of life; events that have captured the imagination of scientists and the general public alike. At first glance, these major evolutionary events seem utterly impossible. The before and after look so fundamentally different that the great transformations of the history of life not only seem impossible, but unknowable. The 500 million year history of vertebrates is filled with change and, as a consequence, every living species contains within its structure, DNA, and fossil record, a narrative of them. A battery of new techniques and approaches, from diverse fields of inquiry, are now being marshaled to explore classic questions of evolution. These approaches span multiple levels of biological organization, from DNA sequences, to organs, to the physiology and ecology of whole organisms. Analysis of developmental systems reveals deep homologies of the mechanisms that pattern organs as different as bird wings and fish fins. Whales with legs are one of a number of creatures that tell us of the great transformations in the history of life. Expeditions have discovered worms with a kind of head, fishes with elbows, wrists, and necks; feathered dinosaurs, and human precursors to name only a few. Indeed, in the last 20 years, paleontologists have discovered more creatures informative of evolutionary transitions than in the previous millennium. The Great Transformations captures the excitement of these new discoveries by bringing diverse teams of renowned scientists together to attack particular transformations, and to do so in a contents organized by body part--head, neck, fins, limbs, and then the entire bauplan. It is a work that will transform evolutionary biology and paleontology.
In 1995, John Maynard Smith and Eörs Szathmáry published their influential book The Major Transitions in Evolution. The "transitions" that Maynard Smith and Szathmáry chose to describe all constituted major changes in the kinds of organisms that existed but, most important, these events also transformed the evolutionary process itself. The evolution of new levels of biological organization, such as chromosomes, cells, multicelled organisms, and complex social groups radically changed the kinds of individuals natural selection could act upon. Many of these events also produced revolutionary changes in the process of inheritance, by expanding the range and fidelity of transmission, establishing new inheritance channels, and developing more open-ended sources of variation. Maynard Smith and Szathmáry had planned a major revision of their work, but the death of Maynard Smith in 2004 prevented this. In this volume, prominent scholars (including Szathmáry himself) reconsider and extend the earlier book's themes in light of recent developments in evolutionary biology. The contributors discuss different frameworks for understanding macroevolution, prokaryote evolution (the study of which has been aided by developments in molecular biology), and the complex evolution of multicellularity.
This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.
During evolution there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies. This is the first book to discuss all these major transitions and their implications for our understanding of evolution.Clearly written and illustrated with many original diagrams, this book will be welcomed by students and researchers in the fields of evolutionary biology, ecology, and genetics.
Patterning in Vertebrate Development is a new volume in the Frontiers in Molecular Biology series which provides a range of comprehensive, and authoritative reviews of current research into patterning, a fundamental process in developmental biology.
This illustrated book describes how some finned vertebrates acquired limbs, giving rise to more than 25,000 extant terrapod species. Michel Laurin uses paleontological, geological, physiological, and comparative anatomical data to describe this monumental event. Along with discussing the evolutionary pressures that may have led vertebrates onto dry land, the author also shows how extant vertebrates yield clues about the conquest of land and how scientists uncover evolutionary history.--[book cover]
The first volume to address the study of evolutionary transitions in plants, Major Evolutionary Transitions in Flowering Plant Reproduction brings together compelling work from the three areas of significant innovation in plant biology: evolution and adaptation in flowers and pollination, mating patterns and gender strategies, and asexual reproduction and polyploidy. Spencer C. H. Barrett assembles here a distinguished group of authors who address evolutionary transitions using comparative and phylogenetic approaches, the tools of genomics, population genetics, and theoretical modeling, and through studies in development and field experiments in ecology. With special focus on evolutionary transitions and shifts in reproductive characters—key elements of biological diversification and research in evolutionary biology—Major Evolutionary Transitions in Flowering Plant Reproduction is the most up-to-date treatment of a fast-moving area of evolutionary biology and ecology.
More than seventy percent of the earth's surface is covered by ocean - the home to a staggering and sometimes overwhelming diversity of organisms, a majority of which reside in pelagic form. Marine invertebrate larvae are an integral part of this pelagic diversity and have stimulated the curiosity of researchers for centuries. This book will provide an important, modern update on the topic of larval ecology, representing the first major synthesis of this interdisciplinary field for more than 20 years. The content will be structured around four major areas: evolutionary origins and transitions in developmental mode; functional morphology and ecology of larval forms; larval transport, settlement, and metamorphosis; climate change and larval ecology at the extremes. This novel synthesis will integrate traditional larval ecology with life history theory, evolutionary developmental biology, and modern genomics research.
As the first four-legged vertebrates, called tetrapods, crept up along the shores of ancient primordial seas, feeding was among the most paramount of their concerns. Looking back into the mists of evolutionary time, fish-like ancestors can be seen transformed by natural selection and other evolutionary pressures into animals with feeding habitats as varied as an anteater and a whale. From frog to pheasant and salamander to snake, every lineage of tetrapods has evolved unique feeding anatomy and behavior. Similarities in widely divergent tetrapods vividly illustrate their shared common ancestry. At the same time, numerous differences between and among tetrapods document the power and majesty that comprises organismal evolutionary history. Feeding is a detailed survey of the varied ways that land vertebrates acquire food. The functional anatomy and the control of complex and dynamic structural components are recurrent themes of this volume. Luminaries in the discipline of feeding biology have joined forces to create a book certain to stimulate future studies of animal anatomy and behavior.
This volume describes features of autonomy and integrates them into the recent discussion of factors in evolution. In recent years ideas about major transitions in evolution are undergoing a revolutionary change. They include questions about the origin of evolutionary innovation, their genetic and epigenetic background, the role of the phenotype and of changes in ontogenetic pathways. In the present book, it is argued that it is likewise necessary to question the properties of these innovations and what was qualitatively generated during the macroevolutionary transitions. The author states that a recurring central aspect of macroevolutionary innovations is an increase in individual organismal autonomy whereby it is emancipated from the environment with changes in its capacity for flexibility, self-regulation and self-control of behavior. The first chapters define the concept of autonomy and examine its history and its epistemological context. Later chapters demonstrate how changes in autonomy took place during the major evolutionary transitions and investigate the generation of organs and physiological systems. They synthesize material from various disciplines including zoology, comparative physiology, morphology, molecular biology, neurobiology and ethology. It is argued that the concept is also relevant for understanding the relation of the biological evolution of man to his cultural abilities. Finally the relation of autonomy to adaptation, niche construction, phenotypic plasticity and other factors and patterns in evolution is discussed. The text has a clear perspective from the context of systems biology, arguing that the generation of biological autonomy must be interpreted within an integrative systems approach.
In the years since the publication of Susumu Ohno's 1970 landmark book Evolution by gene duplication tremendous advances have been made in molecular biology and especially in genomics. Studies of genome structure and function prerequisite to testing hypotheses of genome evolution were all but impossible until recent methodological advances. This book evaluates newly generated empirical evidence as it pertains to theories of genomic evolutionary patterns and processes. Tests of hypotheses using analyses of complete genomes, interpreted in a phylogenetic context, provide evidence regarding the relative importance of gene duplication. The alternative explanation is that the evolution of regulatory elements that control the expression of and interactions among genes has been a more important force in shaping evolutionary innovation. This collection of papers will be of interest to all academic and industry researchers working in the fields of molecular biology, biotechnology, genomics and genome centers.
In the grand sweep of evolution, the origin of radically new kinds of organisms in the fossil record is the result of a relatively simple process: natural selection marching through the ages. Or is it? Does Darwinian evolution acting over a sufficiently long period of time really offer a complete explanation, or are unusual genetic events and particular environmental and ecological circumstances also involved? With The Origin of Higher Taxa, Tom Kemp sifts through the layers of paleobiological, genetic, and ecological evidence on a quest to answer this essential, game-changing question of biology. Looking beyond the microevolutionary force of Darwinian natural selection, Kemp enters the realm of macroevolution, or evolution above the species level. From the origin of mammals to the radiation of flowering plants, these large-scale patterns—such as the rise of novel organismal design, adaptive radiations, and lineage extinctions—encompass the most significant trends and transformations in evolution. As macroevolution cannot be studied by direct observation and experiment, scientists have to rely on the outcome of evolution as evidence for the processes at work, in the form of patterns of species appearances and extinctions in a spotty fossil record, and through the nature of species extant today. Marshalling a wealth of new fossil and molecular evidence and increasingly sophisticated techniques for their study, Kemp here offers a timely and original reinterpretation of how higher taxa such as arthropods, mollusks, mammals, birds, and whales evolved—a bold new take on the history of life.
Investigates and sets out the common principles of social evolution operating across all taxa and levels of biological organisation.
Everybody Out of the Pond At the Water's Edge will change the way you think about your place in the world. The awesome journey of life's transformation from the first microbes 4 billion years ago to Homo sapiens today is an epic that we are only now beginning to grasp. Magnificent and bizarre, it is the story of how we got here, what we left behind, and what we brought with us. We all know about evolution, but it still seems absurd that our ancestors were fish. Darwin's idea of natural selection was the key to solving generation-to-generation evolution -- microevolution -- but it could only point us toward a complete explanation, still to come, of the engines of macroevolution, the transformation of body shapes across millions of years. Now, drawing on the latest fossil discoveries and breakthrough scientific analysis, Carl Zimmer reveals how macroevolution works. Escorting us along the trail of discovery up to the current dramatic research in paleontology, ecology, genetics, and embryology, Zimmer shows how scientists today are unveiling the secrets of life that biologists struggled with two centuries ago. In this book, you will find a dazzling, brash literary talent and a rigorous scientific sensibility gracefully brought together. Carl Zimmer provides a comprehensive, lucid, and authoritative answer to the mystery of how nature actually made itself.
This book focuses on the first vertebrates to conquer land and their long journey to become fully independent from the water. It traces the origin of tetrapod features and tries to explain how and why they transformed into organs that permit life on land. Although the major frame of the topic lies in the past 370 million years and necessarily deals with many fossils, it is far from restricted to paleontology. The aim is to achieve a comprehensive picture of amphibian evolution. It focuses on major questions in current paleobiology: how diverse were the early tetrapods? In which environments did they live, and how did they come to be preserved? What do we know about the soft body of extinct amphibians, and what does that tell us about the evolution of crucial organs during the transition to land? How did early amphibians develop and grow, and which were the major factors of their evolution? The Topics in Paleobiology Series is published in collaboration with the Palaeontological Association, and is edited by Professor Mike Benton, University of Bristol. Books in the series provide a summary of the current state of knowledge, a trusted route into the primary literature, and will act as pointers for future directions for research. As well as volumes on individual groups, the series will also deal with topics that have a cross-cutting relevance, such as the evolution of significant ecosystems, particular key times and events in the history of life, climate change, and the application of a new techniques such as molecular palaeontology. The books are written by leading international experts and will be pitched at a level suitable for advanced undergraduates, postgraduates, and researchers in both the paleontological and biological sciences.
The study of the history of life encompasses the origins of species to their demise: evolution and extinction. Based on studies of the fossil record, this book examines the directionality of evolution--so called evolutionary trends--a fundamental aspect of life history that has received comparatively little attention in recent times. In addition to describing evolutionary trends, from the intraspecific level to macroevolutionary changes in a range of invertebrate and vertebrate organisms, this book sets out to explain just why organisms have evolved in the direction that they have.
This book discusses several recent theoretic advancements in interdisciplinary and transdisciplinary integration in the field of evolution. While exploring novel views, the text maintains a close link with one of the most broadly held views on evolution, namely that of “Darwinian evolution.” This work puts forth a new point of view which allows researchers to define in detail the concept of evolution. To create this conceptual definition, the text applies a stringent object-based focus. With this focus, the editor has been able to develop an object-based pattern of evolution at the smallest scale. Subsequently, this smallest scale pattern is used as an innovative basis for generalizations. These generalizations create links between biological Darwinism and generalized Darwinism. The object-based approach that was used to suggest innovations in the field of Darwinian evolution also allowed for contributions to other topics, such as major evolutionary transitions theory, the definition of life and the relationships between evolution, self-organization and thermodynamics. Together, the chapters of this book and the multidisciplinary reflections and comments of various specialists on these chapters offer an exciting palette of innovative ideas.
Larvae represent one of the classic problems of evolutionary biology and may explain how new body plans originate. It has often been suggested that many entirely unique body plans first originated as retained larvae of ancestral organisms. This book covers larval evolution and the developmental and evolutionary forces which shape and constrain them. Intended to contribute to a continuing dialectic, this book represents diverse opinions as well as manifold conclusions from an international team of leading zoologists and developmental biologists. Certain to challenge and intrigue, this book should be a part of the library of every evolutionary and developmental biologist interested in larvae and their significance. Key Features * Examines how vertebrate and invertebrate larvae develop and evolve * Presents four themes: development, evolution, metamorphosis, and genetic mechanisms * Chapters are organized into three sections: larval types and larval evolution, mechanisms of larval development and evolution, and larval functional morphology, physiology, and ecology
For all the discussion in the media about creationism and 'Intelligent Design', virtually nothing has been said about the evidence in question - the evidence for evolution by natural selection. Yet, as this succinct and important book shows, that evidence is vast, varied, and magnificent, and drawn from many disparate fields of science. The very latest research is uncovering a stream of evidence revealing evolution in action - from the actual observation of a species splitting into two, to new fossil discoveries, to the deciphering of the evidence stored in our genome. Why Evolution is True weaves together the many threads of modern work in genetics, palaeontology, geology, molecular biology, anatomy, and development to demonstrate the 'indelible stamp' of the processes first proposed by Darwin. It is a crisp, lucid, and accessible statement that will leave no one with an open mind in any doubt about the truth of evolution.

Best Books