In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
John E. Freund's Mathematical Statistics with Applications, Eighth Edition, provides a calculus-based introduction to the theory and application of statistics, based on comprehensive coverage that reflects the latest in statistical thinking, the teaching of statistics, and current practices. This text is appropriate for a two-semester or three-quarter calculus-based course in Introduction to Mathematical Statistics. It can also be used for a single-semester course emphasizing probability, probability distributions and densities, sampling, and classical statistical inference.
Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.
Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods
Noted for its integration of real-world data and case studies, this text offers sound coverage of the theoretical aspects of mathematical statistics. The authors demonstrate how and when to use statistical methods, while reinforcing the calculus that students have mastered in previous courses. Throughout theFifth Edition, the authors have added and updated examples and case studies, while also refining existing features that show a clear path from theory to practice.
Thistextbook expands the standard work on numerical mathematics to include the numerics of partial differential equations. The volume is intended for students of mathematics as well as physicists, chemists and engineers who are confronted with finding efficient solutions for complex application problems.
This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
A Course in Mathematical Statistics, Second Edition, contains enough material for a year-long course in probability and statistics for advanced undergraduate or first-year graduate students, or it can be used independently for a one-semester (or even one-quarter) course in probability alone. It bridges the gap between high and intermediate level texts so students without a sophisticated mathematical background can assimilate a fairly broad spectrum of the theorems and results from mathematical statistics. The coverage is extensive, and consists of probability and distribution theory, and statistical inference. * Contains 25% new material * Includes the most complete coverage of sufficiency * Transformation of Random Vectors * Sufficiency / Completeness / Exponential Families * Order Statistics * Elements of Nonparametric Density Estimation * Analysis of Variance (ANOVA) * Regression Analysis * Linear Models
A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.
Eine Vorlesung zur Einführung in die Wahrscheinlichkeitstheorie gehört – neben den Standardvorlesungen Analysis und Lineare Algebra – zur Grundausbildung eines jeden Mathematikers. Vielen Studierenden bereitet der Umgang mit dem "Zufall" Schwierigkeiten. Das Ziel des vorliegenden Buches ist, eine leicht lesbare und gründliche Einführung in die Wahrscheinlichkeitstheorie zu bieten; eine Vielzahl von anschaulichen und sorgfältig ausgewählten Beispielen soll den Studierenden helfen, den Zufall in den Griff zu bekommen. Dabei ist dem Autor eine klare und vollständige Darstellung der Theorie ebenso wichtig wie Beispiele und Abbildungen, die schwer aussehende Sachverhalte verdeutlichen. In zahlreichen Abbildungen und in über 100 Beispielen wird die Theorie illustriert und in verständlichen Worten formuliert. Der Inhalt des Buches ist klassisch und deckt eine erste Einführung in die Wahrscheinlichkeitstheorie – der Theorie des Zufalls – ab.
Die Frage nach dem Aufgabenkreis der Statistik im allgemeinen kann nicht mit wenigen Worten umrissen werden. Wenn man etwas näher auf die geschichtliche Entwicklung des Begriffes Statistik eingeht\ so findet man, daß lange Zeit darunter nur die Beschrei bung von "Staatsmerkwürdigkeiten" (wie Bevölkerungszahl, Bo denbeschaffenheit, Sammlung wirtschaftlicher Daten) verstanden wurde. Erst in neuerer Zeit drang die statistische Betrachtungsweise auch in die Naturwissenschaften ein (BOLTZMANN, GIBBS, MAx WELL). Fußend auf dem Boden der seit Beginn dieses Jahrhunderts sich rasch entwickelnden Wahrscheinlichkeitstheorie hat dann ins besondere in den letzten dreißig Jahren auch die mathematische Statistik einen unerhörten Aufschwung genommen und die Metho den der statistischen Analyse mit einer kaum zu übersehenden Fülle von Gedanken bereichert. Statistische Überlegungen treten heute in den verschiedensten Wissensgebieten auf. Es genügt, wenn wir neben den Wirtschaftswissenschaften als Beispiele die Astronomie, die Biologie, die Medizin, die Psychologie, die Physik und die Soziologie anführen. Wenn es also, wie gesagt, nicht leicht ist, den allgemeinen Be griff der Statistik kurz zu charakterisieren, so geht man doch wohl nicht fehl, wenn man feststellt, daß sich die Statistik mit dem Studium von Erscheinungen befaßt, die entweder eine große Zahl von Individuen betreffen, oder sonst in irgendeiner Weise eine Viel falt von Einzelerscheinungen zusammenfassen. Man kann somit als ein Charakteristikum der Statistik das Studium der Massen erscheinungen betrachten. Es ist eine Erfahrungstatsache, daß bei Massenerscheinungen Gesetzmäßigkeiten nachgewiesen werden können, die bei Einzelerscheinungen kein Gegenstück haben. Das 1 Vgl. W. WrNKLER, Grundriß der Statistik I, 2.
Traditions of the 150-year-old St. Petersburg School of Probability and Statis tics had been developed by many prominent scientists including P. L. Cheby chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In 1948, the Chair of Probability and Statistics was established at the Department of Mathematics and Mechanics of the St. Petersburg State University with Yu. V. Linik being its founder and also the first Chair. Nowadays, alumni of this Chair are spread around Russia, Lithuania, France, Germany, Sweden, China, the United States, and Canada. The fiftieth anniversary of this Chair was celebrated by an International Conference, which was held in St. Petersburg from June 24-28, 1998. More than 125 probabilists and statisticians from 18 countries (Azerbaijan, Canada, Finland, France, Germany, Hungary, Israel, Italy, Lithuania, The Netherlands, Norway, Poland, Russia, Taiwan, Turkey, Ukraine, Uzbekistan, and the United States) participated in this International Conference in order to discuss the current state and perspectives of Probability and Mathematical Statistics. The conference was organized jointly by St. Petersburg State University, St. Petersburg branch of Mathematical Institute, and the Euler Institute, and was partially sponsored by the Russian Foundation of Basic Researches. The main theme of the Conference was chosen in the tradition of the St.
In seinem neuen internationalen Bestseller untersucht Dan Ariely unser Verhalten in der Arbeitswelt und im Privatleben. Sein überraschender Befund: Unsere Gefühle verleiten uns zwar häufig zu falschen Entscheidungen, doch insgesamt geht es uns oft besser, wenn wir den Verstand auch mal links liegen lassen.
Entries cover statistical theory, methods, and applications. Includes the latest topics and advances made in statistical science over the past decade--in areas such as computer-intensive statistical methodology, genetics, medicine, the environment, and other applications.
Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)

Best Books