Multivariate Statistical Analysis
Printbegrænsninger: Der kan printes 10 sider ad gangen og max. 40 sider pr. session
"This textbook presents a classical approach to some techniques of multivariate analysis in a simple and transparent manner. It offers clear and concise development of the concepts; interpretation of the output of the analysis; and criteria for selection of the methods, taking into account the strengths and weaknesses of each." "This book is ideal as an advanced textbook for graduate students in statistics and other disciplines like social, biological and physical sciences. It will also be of benefit to professional statisticians." --Book Jacket.
Multivariate Statistical Simulation Mark E. Johnson For the researcher in statistics, probability, and operations research involved in the design and execution of a computer-aided simulation study utilizing continuous multivariate distributions, this book considers the properties of such distributions from a unique perspective. With enhancing graphics (three-dimensional and contour plots), it presents generation algorithms revealing features of the distribution undisclosed in preliminary algebraic manipulations. Well-known multivariate distributions covered include normal mixtures, elliptically assymmetric, Johnson translation, Khintine, and Burr-Pareto-logistic. 1987 (0 471-82290-6) 230 pp. Aspects of Multivariate Statistical Theory Robb J. Muirhead A classical mathematical treatment of the techniques, distributions, and inferences based on the multivariate normal distributions. The main focus is on distribution theory—both exact and asymptotic. Introduces three main areas of current activity overlooked or inadequately covered in existing texts: noncentral distribution theory, decision theoretic estimation of the parameters of a multivariate normal distribution, and the uses of spherical and elliptical distributions in multivariate analysis. 1982 (0 471-09442-0) 673 pp. Multivariate Observations G. A. F. Seber This up-to-date, comprehensive sourcebook treats data-oriented techniques and classical methods. It concerns the external analysis of differences among objects, and the internal analysis of how the variables measured relate to one another within objects. The scope ranges from the practical problems of graphically representing high dimensional data to the theoretical problems relating to matrices of random variables. 1984 (0 471-88104-X) 686 pp.
The purpose of this book is to introduce multivariate statistical methods to non-mathematicians. It is not intended to be comprehensive. Rather, the intention is to keep the details to a minimum while still conveying a good idea of what can be done. In other words, it is a book to 'get you going' in a particular area of statistical methods. This second edition has retained all of Professor Manly's crystal clear style. It is based on a course that has been taught successfully at the University of Otago for a number of years but has increased coverage on measuring distances between cases based on presence-absence data, a new selection on logistic regression, new exercises and two completely new chapters on graphical methods and ordination. The author has taken into account the major shift in the way in which computer software is used, but the emphasis is on the underlying principles rather than the use of particular programs.
A state of the art presentation of the tools and concepts of multivariate data analysis with a strong focus on applications. The first part is devoted to graphical techniques describing the distributions of the involved variables. The second part deals with multivariate random variables and presents distributions, estimators and tests for various practical situations. The last part covers mulivariate techniques and introduces the reader into the wide variety of tools for multivariate data analysis. The text presents a wide range of examples and 228 exercises.
This market leading text provides experimental scientists in a wide variety of disciplines with a readable introduction to the statistical analysis of multivariate observations. Its overarching goal is to provide readers with the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. The Fourth Edition has been revised to take greater advantage of graphical displays of multivariate data and of statistical software programs that facilitate the analysis of complex data. *NEW - Graphical displays of multivariate data moved from Chapter 12 to chapter 1 and many new illustrations and graphics have been added to provide a more visual approach to the subject. *NEW - discussions of important topics including: - Detecting Outliers and Data Cleaning in Chapter 4.- Multivariate Quality Control in Chapter 5. - Monitoring Quality with Principal Components in Chapter 8.- Correspondence Analysis, Biplots, and Procrustes Analysis in Chapter 12. *NEW - Expanded coverage of the following topics: Generalized variance, Assessing normality and transformations to normality, Repeated measures designs, Model checking and other aspects of regre
With a wealth of examples and exercises, this is a brand new edition of a classic work on multivariate data analysis. A key advantage of the work is its accessibility as it presents tools and concepts in a way that is understandable for non-mathematicians.
Perfected over three editions and more than forty years, this field- and classroom-tested reference: * Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. * Treats all the basic and important topics in multivariate statistics. * Adds two new chapters, along with a number of new sections. * Provides the most methodical, up-to-date information on MV statistics available.
For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.
Explores the statistical methods for describing and analyzing multivariate data. It's goal is to provide readers with the knowledge necessary to make proper interpretations, and select appropriate techniques for analyzing multivariate data Coverage includes: Detecting Outliers and Data Cleaning; Multivariate Quality Control; Monitoring Quality with Principal Components; and Correspondence Analysis, Biplots, and Procrustes Analysis.
Using formal descriptions, graphical illustrations, practical examples, and R software tools, Introduction to Multivariate Statistical Analysis in Chemometrics presents simple yet thorough explanations of the most important multivariate statistical methods for analyzing chemical data. It includes discussions of various statistical methods, such as principal component analysis, regression analysis, classification methods, and clustering. Written by a chemometrician and a statistician, the book reflects the practical approach of chemometrics and the more formally oriented one of statistics. To enable a better understanding of the statistical methods, the authors apply them to real data examples from chemistry. They also examine results of the different methods, comparing traditional approaches with their robust counterparts. In addition, the authors use the freely available R package to implement methods, encouraging readers to go through the examples and adapt the procedures to their own problems. Focusing on the practicality of the methods and the validity of the results, this book offers concise mathematical descriptions of many multivariate methods and employs graphical schemes to visualize key concepts. It effectively imparts a basic understanding of how to apply statistical methods to multivariate scientific data.
The death of Professor K.C. Sreedharan Pillai on June 5, 1985 was a heavy loss to many statisticians all around the world. This volume is dedicated to his memory in recog nition of his many contributions in multivariate statis tical analysis. It brings together eminent statisticians Working in multivariate analysis from around the world. The research and expository papers cover a cross-section of recent developments in the field. This volume is especially useful to researchers and to those who want to keep abreast of the latest directions in multivariate statistical analysis. I am grateful to the authors from so many different countries and research institutions who contributed to this volume. I wish to express my appreciation to all those who have reviewed the papers. The list of people include Professors T.C. Chang, So-Hsiang Chou, Dipak K. Dey, Peter Hall, Yu-Sheng Hsu, J.D. Knoke, W.J. Krzanowski, Edsel Pena, Bimal K. Sinha, Dennis L. Young, Drs. K. Krishnamoorthy, D.K. Nagar, and Messrs. Alphonse Amey, Chi-Chin Chao and Samuel Ofori-Nyarko. I wish to thank Professors Shanti S. Gupta and James 0. Berger for their keen interest and encouragement. Thanks are also due to Cynthia Patterson for her help and Reidel Publishing Com~any for their cooperation in bringing this volume out.
The book presents multivariate statistical methods useful in geological analysis. The essential distinction between multivariate analysis as applied to full-space data (measurements on lengths, heights, breadths etc.) and compositional data is emphasized with particular reference to geochemical data. Each of the methods is accompanied by a practically oriented computer program and backed up by appropriate examples. The computer programs are provided on a compact disk together with trial data-sets and examples of the output. An important feature of this book is the graphical system developed by Dr. Savazzi which is entitled Graph Server. Geological data often deviate from ideal statistical requirements. For this reason, close attention has been paid to the analysis of data that contain atypical observations.
Vector and matrix algebra; Groups and Jacobian of some transformations; Multivariate distributions and Invariance; Properties of multivariate distributions; Estimators of parameters and their functions; Basic multivariate sampling distributions; Tests of hypotheses of mean vectors; Tests concerning covariance matrices and mean vectors; Discriminant analysis; Principal components; Canonical correlations; Factor analysis.
Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate method. Many computer examples--drawing on SAS software --are used as demonstrations. Throughout the book, the computer is used as an adjunct to the presentation of a multivariate statistical method in an empirically oriented approach. Basically, the model adopted in this book is to first present the theory of a multivariate statistical method along with the basic mathematical computations necessary for the analysis of data. Subsequently, a real world problem is discussed and an example data set is provided for analysis. Throughout the presentation and discussion of a method, many references are made to the computer, output are explained, and exercises and examples with real data are included.

Best Books