An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.
Symmetrie spielt in der Mechanik eine große Rolle. Dieses Buch beschreibt die Entwicklung zugrunde liegender Theorien. Besonderes Gewicht wird der Symmetrie beigemessen. Ursache hierfür sind Entwicklungen im Bereich dynamischer Systeme, der Einsatz geometrischer Verfahren und neue Anwendungen. Dieses Lehrbuch stellt Grundlagen bereit und beschreibt zahlreiche spezifische Anwendungen. Interessant für Physiker und Ingenieure. Ausgewählte Beispiele, Anwendungen, aktuelle Verfahren/Techniken veranschaulichen die Theorie.
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.
This IMA Volume in Mathematics and its Applications COMPUTER AIDED PROOFS IN ANALYSIS is based on the proceedings of an IMA Participating Institutions (PI) Conference held at the University of Cincinnati in April 1989. Each year the 19 Participating Institutions select, through a competitive process, several conferences proposals from the PIs, for partial funding. This conference brought together leading figures in a number of fields who were interested in finding exact answers to problems in analysis through computer methods. We thank Kenneth Meyer and Dieter Schmidt for organizing the meeting and editing the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Since the dawn of the computer revolution the vast majority of scientific compu tation has dealt with finding approximate solutions of equations. However, during this time there has been a small cadre seeking precise solutions of equations and rigorous proofs of mathematical results. For example, number theory and combina torics have a long history of computer-assisted proofs; such methods are now well established in these fields. In analysis the use of computers to obtain exact results has been fragmented into several schools.
Sehr viele Prozesse in Physik, Chemie, Biologie, Medizin und in den Ingenieur- und Wirtschaftswissenschaften werden durch Differenzialgleichungen beschrieben. Dieses Buch stellt leistungsfähige analytische und numerische Methoden bereit, um die in der Praxis auftretenden nichtlinearen Differenzialgleichungen und dynamischen Systeme zu analysieren. Die wichtigsten Methoden, Sätze und Beweistechniken für Differenzialgleichungen werden vorgestellt. Zum Einsatz kommen sowohl elementare analytische Techniken als auch qualitative, geometrische und numerische Verfahren. Der Klärung grundlegender Phänomene wie Stabilität und Lösungsverzweigungen dienen Grundlagen aus der Funktionalanalysis und der Bifurkationstheorie. Mit der breiten Verfügbarkeit von Computern mit enormer Rechnerleistung wird zugleich der Einsatz effizienter numerischer Methoden sinnvoll, da eine Analyse größerer Systeme nur mit Hilfe von Computern möglich ist. So werden aktuelle Näherungsverfahren einschließlich ihrer leicht programmierbaren Algorithmen vorgestellt und beispielhaft durch Anwendungen illustriert. Der Leser erhält damit eine kurze, zeitgemäße, anschauliche und vergleichsweise verständliche Einführung in die Theorie und die Numerik dynamischer Systeme einschließlich der Algorithmen. Das Buch versteht sich als Brücke zwischen einem elementaren Kurs über Differenzialgleichungen und der inzwischen sehr umfangreichen modernen Forschungsliteratur. Es ist für Master-Studierende und Forscher in Mathematik, Ingenieur- und Naturwissenschaften geschrieben und wird auch dem Praktiker von Nutzen sein.
The result of the 1993 Connectionist Models Summer School, the papers in this volume exemplify the tremendous breadth and depth of research underway in the field of neural networks. Although the slant of the summer school has always leaned toward cognitive science and artificial intelligence, the diverse scientific backgrounds and research interests of accepted students and invited faculty reflect the broad spectrum of areas contributing to neural networks, including artificial intelligence, cognitive science, computer science, engineering, mathematics, neuroscience, and physics. Providing an accurate picture of the state of the art in this fast-moving field, the proceedings of this intense two-week program of lectures, workshops, and informal discussions contains timely and high-quality work by the best and the brightest in the neural networks field.
Modeling Atmospheric and Oceanic Flows: Insights from LaboratoryExperiments and Numerical Simulations provides a broad overview ofrecent progress in using laboratory experiments and numericalsimulations to model atmospheric and oceanic fluid motions. Thisvolume not only surveys novel research topics in laboratoryexperimentation, but also highlights recent developments in thecorresponding computational simulations. As computing power growsexponentially and better numerical codes are developed, theinterplay between numerical simulations and laboratory experimentsis gaining paramount importance within the scientific community.The lessons learnt from the laboratory–model comparisons inthis volume will act as a source of inspiration for the nextgeneration of experiments and simulations. Volume highlightsinclude: Topics pertaining to atmospheric science, climatephysics, physical oceanography, marine geology and geophysics Overview of the most advanced experimental andcomputational research in geophysics Recent developments in numerical simulations ofatmospheric and oceanic fluid motion Unique comparative analysis of the experimentaland numerical approaches to modeling fluid flow Modeling Atmospheric and Oceanic Flows will be a valuableresource for graduate students, researchers, and professionals inthe fields of geophysics, atmospheric sciences, oceanography,climate science, hydrology, and experimental geosciences.
The book is a self-contained comprehensive exposition of the equivariant degree theory and its applications to a variety of problems arising in physics, chemistry, biology and engineering. This monograph presents the theoretical foundations, construction, and the fundamental properties of the equivariant degree and its practical variations, which are applied to a series of examples from (functional) differential equations. It contains a) the first thorough and complete introduction up to the present state of art to equivariant degree theory including non-abelian actions, and b) provides for the first time several computer routines allowing an effective practical computation of the degree, illustrated by numerous concrete examples and charts. The exposition of the material is mainly addressed to experienced researchers and graduate students interested in applications of equivariant topological methods, or working with differential equations and their applications, like physicists, biologists, chemists and engineers dealing with nonlinear dynamics with symmetries.
The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.

Best Books