OpenGL® Shading Language, Third Edition, extensively updated for OpenGL 3.1, is the experienced application programmer’s guide to writing shaders. Part reference, part tutorial, this book thoroughly explains the shift from fixed-functionality graphics hardware to the new era of programmable graphics hardware and the additions to the OpenGL API that support this programmability. With OpenGL and shaders written in the OpenGL Shading Language, applications can perform better, achieving stunning graphics effects by using the capabilities of both the visual processing unit and the central processing unit. In this book, you will find a detailed introduction to the OpenGL Shading Language (GLSL) and the new OpenGL function calls that support it. The text begins by describing the syntax and semantics of this high-level programming language. Once this foundation has been established, the book explores the creation and manipulation of shaders using new OpenGL function calls. OpenGL® Shading Language, Third Edition, includes updated descriptions for the language and all the GLSL entry points added though OpenGL 3.1, as well as updated chapters that discuss transformations, lighting, shadows, and surface characteristics. The third edition also features shaders that have been updated to OpenGL Shading Language Version 1.40 and their underlying algorithms, including Traditional OpenGL fixed functionality Stored textures and procedural textures Image-based lighting Lighting with spherical harmonics Ambient occlusion and shadow mapping Volume shadows using deferred lighting Ward’s BRDF model The color plate section illustrates the power and sophistication of the OpenGL Shading Language. The API Function Reference at the end of the book is an excellent guide to the API entry points that support the OpenGL Shading Language.
OpenGL Shading Language 4 Cookbook is a hands-on guide that gets straight to the point – actually creating graphics, instead of just theoretical learning. Each recipe is specifically tailored to satisfy your appetite for producing real-time 3-D graphics using the latest GLSL specification. This book is for OpenGL programmers looking to use the modern features of GLSL 4 to create real-time, three-dimensional graphics. Familiarity with OpenGL programming, along with the typical 3D coordinate systems, projections, and transformations is assumed. It can also be useful for experienced GLSL programmers who are looking to implement the techniques that are presented here.
Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL shading language. While teaching how to write programmable shaders, the authors also teach and reinforce the fundamentals of computer graphics. The second edition has been updated to incorporate changes in the OpenGL API (OpenGL 4.x and GLSL 4.x0) and also has a chapter on the new tessellation shaders, including many practical examples. The book starts with a quick review of the graphics pipeline, emphasizing features that are rarely taught in introductory courses, but are immediately exposed in shader work. It then covers shader-specific theory for vertex, tessellation, geometry, and fragment shaders using the GLSL 4.x0 shading language. The text also introduces the freely available glman tool that enables you to develop, test, and tune shaders separately from the applications that will use them. The authors explore how shaders can be used to support a wide variety of applications and present examples of shaders in 3D geometry, scientific visualization, geometry morphing, algorithmic art, and more. Features of the Second Edition: Written using the most recent specification releases (OpenGL 4.x and GLSL 4.x0) including code examples brought up-to-date with the current standard of the GLSL language. More examples and more exercises A chapter on tessellation shaders An expanded Serious Fun chapter with examples that illustrate using shaders to produce fun effects A discussion of how to handle the major changes occurring in the OpenGL standard, and some C++ classes to help you manage that transition The authors thoroughly explain the concepts, use sample code to describe details of the concepts, and then challenge you to extend the examples. They provide sample source code for many of the book’s examples at www.cgeducation.org
Over 60 highly focused, practical recipes to maximize your OpenGL Shading language use.
Get Real-World Insight from Experienced Professionals in the OpenGL Community With OpenGL, OpenGL ES, and WebGL, real-time rendering is becoming available everywhere, from AAA games to mobile phones to web pages. Assembling contributions from experienced developers, vendors, researchers, and educators, OpenGL Insights presents real-world techniques for intermediate and advanced OpenGL, OpenGL ES, and WebGL developers. Go Beyond the Basics The book thoroughly covers a range of topics, including OpenGL 4.2 and recent extensions. It explains how to optimize for mobile devices, explores the design of WebGL libraries, and discusses OpenGL in the classroom. The contributors also examine asynchronous buffer and texture transfers, performance state tracking, and programmable vertex pulling. Sharpen Your Skills Focusing on current and emerging techniques for the OpenGL family of APIs, this book demonstrates the breadth and depth of OpenGL. Readers will gain practical skills to solve problems related to performance, rendering, profiling, framework design, and more.
This book is a practical guide to the OpenGL Shading Language, which contains several real-world examples that will allow you to grasp the core concepts easily and the use of the GLSL for graphics rendering applications. If you want upgrade your skills, or are new to shader programming and want to learn about graphic programming, this book is for you. If you want a clearer idea of shader programming, or simply want to upgrade from fixed pipeline systems to state-of-the-art shader programming and are familiar with any C-based language, then this book will show you what you need to know.
Over 70 recipes that cover advanced techniques for 3D programming such as lighting, shading, textures, particle systems, and image processing with OpenGL 4.6 Key Features Explore techniques for implementing shadows using shadow maps and shadow volumes Learn to use GLSL features such as compute, geometry, and tessellation shaders Use GLSL to create a wide variety of modern, realistic visual effects Book Description OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications. What you will learn Compile, debug, and communicate with shader programs Use compute shaders for physics, animation, and general computing Learn about features such as shader storage buffer objects and image load/store Utilize noise in shaders and learn how to use shaders in animations Use textures for various effects including cube maps for reflection or refraction Understand physically based reflection models and the SPIR-V Shader binary Learn how to create shadows using shadow maps or shadow volumes Create particle systems that simulate smoke, fire, and other effects Who this book is for If you are a graphics programmer looking to learn the GLSL shading language, this book is for you. A basic understanding of 3D graphics and programming experience with C++ are required.
The book is written in a Cookbook format with practical recipes aimed at helping you exploit OpenGL to its full potential. This book is targeted towards intermediate OpenGL programmers. However, those who are new to OpenGL and know an alternate API like DirectX might also find these recipes useful to create OpenGL animations.
Complete Coverage of OpenGL� 4.5--the Latest Version (Includes 4.5, 4.4, SPIR-V, and Extensions) The latest version of today's leading worldwide standard for computer graphics, OpenGL 4.5 delivers significant improvements in application efficiency, flexibility, and performance. OpenGL 4.5 is an exceptionally mature and robust platform for programming high-quality computer-generated images and interactive applications using 2D and 3D objects, color images, and shaders. OpenGL� Programming Guide, Ninth Edition, presents definitive, comprehensive information on OpenGL 4.5, 4.4, SPIR-V, OpenGL extensions, and the OpenGL Shading Language. It will serve you for as long as you write or maintain OpenGL code. This edition of the best-selling "Red Book" fully integrates shader techniques alongside classic, function-centric approaches, and contains extensive code examples that demonstrate modern techniques. Starting with the fundamentals, its wide-ranging coverage includes drawing, color, pixels, fragments, transformations, textures, framebuffers, light and shadow, and memory techniques for advanced rendering and nongraphical applications. It also offers discussions of all shader stages, including thorough explorations of tessellation, geometric, and compute shaders. New coverage in this edition includes Thorough coverage of OpenGL 4.5 Direct State Access (DSA), which overhauls the OpenGL programming model and how applications access objects Deeper discussions and more examples of shader functionality and GPU processing, reflecting industry trends to move functionality onto graphics processors Demonstrations and examples of key features based on community feedback and suggestions Updated appendixes covering the latest OpenGL libraries, related APIs, functions, variables, formats, and debugging and profiling techniques
OpenGL® SuperBible, Seventh Edition, is the definitive programmer’s guide, tutorial, and reference for OpenGL 4.5, the world’s leading 3D API for real-time computer graphics. The best introduction for any developer, it clearly explains OpenGL’s newest APIs; key extensions; shaders; and essential, related concepts. You’ll find up-to-date, hands-on guidance for all facets of modern OpenGL development—both desktop and mobile. The authors explain what OpenGL does, how it connects to the graphics pipeline, and how it manages huge datasets to deliver compelling experiences. Step by step, they present increasingly sophisticated techniques, illuminating key concepts with worked examples. They introduce OpenGL on several popular platforms, and offer up-to-date best practices and performance advice. This revised and updated edition introduces many new OpenGL 4.5 features, including important ARB and KHR extensions that are now part of the standard. It thoroughly covers the latest Approaching Zero Driver Overhead (AZDO) performance features, and demonstrates key enhancements with new example applications. Coverage includes A practical introduction to real-time 3D graphics, including foundational math Core techniques for rendering, transformations, and texturing Shaders and the OpenGL Shading Language (GLSL) in depth Vertex processing, drawing commands, primitives, fragments, and framebuffers Compute shaders: harnessing graphics cards for more than graphics Pipeline monitoring and control Managing, loading, and arbitrating access to data Building larger applications and deploying them across platforms Advanced rendering: light simulation, artistic and non-photorealistic effects, and more Reducing CPU overhead and analyzing GPU behavior Supercharging performance with persistent maps, bindless textures, and fine-grained synchronization Preventing and debugging errors New applications: texture compression, text drawing, font rendering with distance fields, high-quality texture filtering, and OpenMP Bonus material and sample code are available at openglsuperbible.com.
Thoroughly revised, this third edition focuses on modern techniques used to generate synthetic three-dimensional images in a fraction of a second. With the advent of programmable shaders, a wide variety of new algorithms have arisen and evolved over the past few years. This edition discusses current, practical rendering methods used in games and other applications. It also presents a solid theoretical framework and relevant mathematics for the field of interactive computer graphics, all in an approachable style. The authors have made the figures used in the book available for download for fair use.:Download Figures.
Using WebGL®, you can create sophisticated interactive 3D graphics inside web browsers, without plug-ins. WebGL makes it possible to build a new generation of 3D web games, user interfaces, and information visualization solutions that will run on any standard web browser, and on PCs, smartphones, tablets, game consoles, or other devices. WebGL Programming Guide will help you get started quickly with interactive WebGL 3D programming, even if you have no prior knowledge of HTML5, JavaScript, 3D graphics, mathematics, or OpenGL. You’ll learn step-by-step, through realistic examples, building your skills as you move from simple to complex solutions for building visually appealing web pages and 3D applications with WebGL. Media, 3D graphics, and WebGL pioneers Dr. Kouichi Matsuda and Dr. Rodger Lea offer easy-to-understand tutorials on key aspects of WebGL, plus 100 downloadable sample programs, each demonstrating a specific WebGL topic. You’ll move from basic techniques such as rendering, animating, and texturing triangles, all the way to advanced techniques such as fogging, shadowing, shader switching, and displaying 3D models generated by Blender or other authoring tools. This book won’t just teach you WebGL best practices, it will give you a library of code to jumpstart your own projects. Coverage includes: • WebGL’s origin, core concepts, features, advantages, and integration with other web standards • How and basic WebGL functions work together to deliver 3D graphics • Shader development with OpenGL ES Shading Language (GLSL ES) • 3D scene drawing: representing user views, controlling space volume, clipping, object creation, and perspective • Achieving greater realism through lighting and hierarchical objects • Advanced techniques: object manipulation, heads-up displays, alpha blending, shader switching, and more • Valuable reference appendixes covering key issues ranging from coordinate systems to matrices and shader loading to web browser settings This is the newest text in the OpenGL Technical Library, Addison-Wesley’s definitive collection of programming guides an reference manuals for OpenGL and its related technologies. The Library enables programmers to gain a practical understanding of OpenGL and the other Khronos application-programming libraries including OpenGL ES and OpenCL. All of the technologies in the OpenGL Technical Library evolve under the auspices of the Khronos Group, the industry consortium guiding the evolution of modern, open-standards media APIs.
Today truly useful and interactive graphics are available on affordable computers. While hardware progress has been impressive, widespread gains in software expertise have come more slowly. Information about advanced techniques—beyond those learned in introductory computer graphics texts—is not as easy to come by as inexpensive hardware. This book brings the graphics programmer beyond the basics and introduces them to advanced knowledge that is hard to obtain outside of an intensive CG work environment. The book is about graphics techniques—those that don’t require esoteric hardware or custom graphics libraries—that are written in a comprehensive style and do useful things. It covers graphics that are not covered well in your old graphics textbook. But it also goes further, teaching you how to apply those techniques in real world applications, filling real world needs. Emphasizes the algorithmic side of computer graphics, with a practical application focus, and provides usable techniques for real world problems. Serves as an introduction to the techniques that are hard to obtain outside of an intensive computer graphics work environment. Sophisticated and novel programming techniques are implemented in C using the OpenGL library, including coverage of color and lighting; texture mapping; blending and compositing; antialiasing; image processing; special effects; natural phenomena; artistic and non-photorealistic techniques, and many others.
Now that PC users have entered the realm of programmable hardware, graphics programmers can create 3D images and animations comparable to those produced by RenderMan's procedural programs—-but in real time. Here is a book that will bring this cutting-edge technology to your computer. Beginning with the mathematical basics of vertex and pixel shaders, and building to detailed accounts of programmable shader operations, Real-Time Shader Programming provides the foundation and techniques necessary for replicating popular cinema-style 3D graphics as well as creating your own real-time procedural shaders. A compelling writing style, color illustrations throughout, and scores of online resources make Real-Time Shader Programming an indispensable tutorial/reference for the game developer, graphics programmer, game artist, or visualization programmer, to create countless real-time 3D effects. * Contains a complete reference of the low-level shader language for both DirectX 8 and DirectX 9 * Provides an interactive shader demonstration tool (RenderMonkeyTM) for testing and experimenting * Maintains an updated version of the detailed shader reference section at www.directx.com * Teaches the latest shader programming techniques for high-performance real-time 3D graphics
This updated third edition addresses the mathematical skills that a programmer needs to develop a 3D game engine and computer graphics for professional-level games. MATHEMATICS FOR 3D GAME PROGRAMMING & COMPUTER GRAPHICS, THIRD EDITION is suitable for adv
Provides information on shaders and their creation using ATI's RenderMonkey platform.
Interactive Computer Graphics with WebGL, Seventh Edition, is suitable for undergraduate students in computer science and engineering, for students in other disciplines who have good programming skills, and for professionals interested in computer animation and graphics using the latest version of WebGL. ¿ Computer animation and graphics are now prevalent in everyday life from the computer screen, to the movie screen, to the smart phone screen. The growing excitement about WebGL applications and their ability to integrate HTML5, inspired the authors to exclusively use WebGL in the Seventh Edition of Interactive Computer Graphics with WebGL.Thisis the only introduction to computer graphics text for undergraduates that fully integrates WebGL and emphasizes application-based programming. The top-down, programming-oriented approach allows for coverage of engaging 3D material early in the course so students immediately begin to create their own 3D graphics. ¿¿ Teaching and Learning Experience This program will provide a better teaching and learning experience–for you and your students. It will help: Engage Students Immediately with 3D Material: A top-down, programming-oriented approach allows for coverage of engaging 3D material early in the course so students immediately begin to create their own graphics. Introduce Computer Graphics Programming with WebGL and JavaScript: WebGL is not only fully shader-based–each application must provide at least a vertex shader and a fragment shader–but also a version that works within the latest web browsers.
Get Started Fast with Modern OpenGL ES Graphics Programming for iPhone, iPod touch, and iPad OpenGL ES technology underlies the user interface and graphical capabilities of Apple’s iPhone, iPod touch, and iPad–as well as devices ranging from video-game consoles and aircraft-cockpit displays to non-Apple smartphones. In this friendly, thorough introduction, Erik M. Buck shows how to make the most of Open GL ES in Apple’s iOS environment. This highly anticipated title focuses on modern, efficient approaches that use the newest versions of OpenGL ES, helping you avoid the irrelevant, obsolete, and misleading techniques that litter the Internet. Buck embraces Objective-C and Cocoa Touch, showing how to leverage Apple’s powerful, elegant GLKit framework to maximize your productivity, achieve tight platform integration, and deliver exceptionally polished apps. If you’ve written C or C++ code and know object-oriented programming basics, this title brings together everything you need to fully master OpenGL ES graphics for iOS–including downloadable examples specifically designed to jumpstart your own projects. Coverage includes • Understanding core OpenGL ES computer graphics concepts and iOS graphics architecture • Integrating Cocoa Touch with OpenGL ES to leverage the power of Apple’s platform • Creating textures from start to finish: opacity, blending, multi-texturing, and compression • Simulating ambient, diffuse, and specular light • Using transformations to render 3D geometric objects from any point of view • Animating scenes by controlling time through application logic • Partitioning data to draw expansive outdoor scenes with rolling terrain • Detecting and handling user interaction with 3D geometry • Implementing special effects ranging from skyboxes to particles and billboards • Systematically optimizing graphics performance • Understanding the essential linear algebra concepts used in computer graphics • Designing and constructing a complete simulation that incorporates everything you’ve learned

Best Books