Optical Waves in Layered Media presents a clear picture of the propagation of optical waves in layered media and teaches the reader how to design and analyze optical devices using such media. Starting from the simplest case of plane wave propagation in homogeneous media, the author introduces a new matrix method for studying the optical properties of multilayer structures consisting of isotropic materials. He then describes propagation in anisotropic layered media and in inhomogeneous layers, guided waves, the coupling of modes, and the optical properties of superlattices and quantum wells. Optical Waves in Layered Media bridges the gap between theory and practice by means of numerical examples based on real-life situations.
Describes how laser radiation propagates in natural and artificial materials and how the state of radiation can be controlled and manipulated (phase intensity, polarization) by various means. New concepts and useful techniques are described in the problems. Includes many figures, tables, and examples.
This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects, and optics. Peter Markos and Costas Soukoulis begin by establishing the analogy between wave propagation in electronic systems and electromagnetic media and then show how the transfer matrix can be easily applied to any type of wave propagation, such as electromagnetic, acoustic, and elastic waves. The transfer matrix approach of the tight-binding model allows readers to understand its implementation quickly and all the concepts of solid-state physics are clearly introduced. Markos and Soukoulis then build the discussion of such topics as random systems and localized and delocalized modes around the transfer matrix, bringing remarkable clarity to the subject. Total internal reflection, Brewster angles, evanescent waves, surface waves, and resonant tunneling in left-handed materials are introduced and treated in detail, as are important new developments like photonic crystals, negative index materials, and surface plasmons. Problem sets aid students working through the subject for the first time.
This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.
Explains in detail the basics, theory, design, fabrication, and operation of vertical-cavity surface-emitting lasers. All the chapters are written by pioneers and key experts who have exclusive access to the most up-to-date innovations in the respective fields.
This book presents current theories of diffraction, imaging, and related topics based on Fourier analysis and synthesis techniques, which are essential for understanding, analyzing, and synthesizing modern imaging, optical communications and networking, as well as micro/nano systems. Applications covered include tomography; magnetic resonance imaging; synthetic aperture radar (SAR) and interferometric SAR; optical communications and networking devices; computer-generated holograms and analog holograms; and wireless systems using EM waves.
Schon die erste Auflage des englischen Lehrbuchs 'Fundamentals of Photonics' zeichnete sich durch seine ausgewogene Mischung von Theorie und Praxis aus, und deckte in detaillierter Darstellung die grundlegenden Theorien des Lichts ab. Es umfasste sowohl die Themen Strahlenoptik, Wellenoptik, elektromagnetische Optik, Photonenoptik, sowie die Wechselwirkung von Licht und Materie, als auch die Theorie der optischen Eigenschaften von Halbleitern. Die Photonik-Technologie hat eine rasante Entwicklung genommen seit der Publikation der ersten Ausgabe von 'Fundamentals of Photonics' vor 15 Jahren. Die nun vorliegende Zweite Auflage des Marksteins auf dem Gebiet der Photonik trägt mit zwei neuen und zusätzlichen Kapiteln den neuesten technologischen Fortschritten Rechnung: Photonische Kristalle sowie Ultrakurzpuls-Optik. Zudem wurden alle Kapitel gründlich überarbeitet und viele Abschnitte hinzugefügt, so z.B. über Laguerre-Gauss Strahlen, die Sellmeier-Gleichung, Photonenkristall-Wellenleiter, photonische Kristallfasern, Mikrosphären-Resonatoren, Optische Kohärenz Tomographie, Bahndrehimpuls des Photons, Bohrsche Theorie, Raman-Verstärker, rauscharme Avalanche-Photodioden, Abstimmkurven und Dispersions-Management.
Bridging the gap between theory and practice, it clarifies important phenomena in photorefractive media and shows how to apply these phenomena in actual situations. While the focus is on the theory of propagation of optical waves and the mixing of electromagnetic radiation in these media, there are also many numerical examples based on real-world situations included for hands-on guidance. In addition to exploring the basics of electromagnetic waves and periodic structures, this practical guide discusses optical phase conjugators and photorefractive resonators; covers fundamental properties of gratings and holograms; details how to use optical information processing, optical interconnection and neural networks; and treats high-order photorefractive effects in optical fibers.
NOW UPDATED—THE HIGHLY PRACTICAL GUIDE TO ANALYZING LIQUIDCRYSTAL DISPLAYS The subject of liquid crystal displays has vigorously evolvedinto an exciting interdisciplinary field of research anddevelopment, involving optics, materials, and electronics. Updatedto reflect recent advances, the Second Edition of Optics ofLiquid Crystal Displays now offers a broader, morecomprehensive discussion on the fundamentals of display systems andteaches readers how to analyze and design new components andsubsystems for LCDs. New features of this edition include: Discussion of the dynamics of molecular reorientation Expanded information of the method of Poincaré sphere invarious optical components, including achromatic wave plates andcompensators Neutral and negative Biaxial thin films for compensators Circular polarizers and anti-reflection coatings The introduction of wide field-of-view wave plates andfilters Comprehensive coverage of VA-LCD and IPS-LCD Additional numerical examples This updated edition is intended as a textbook for students inelectrical engineering and applied physics, as well as a referencebook for engineers and scientists working in the area of researchand development of display technologies.
A comprehensive introduction to this fast growing technology This book provides an introduction to the rapidly advancing and expanding field of fiber optic sensors, with chapters contributed by internationally recognized experts. Each of the three sections-Basic Components, Technology, and Applications-offers a stand-alone primer on a key area of the field. Together, they give engineers, scientists, graduate students, and advanced undergraduates a comprehensive resource on fiber optic sensors. Initial chapters cover optical fibers, light sources, and detectors and optical modulators, introducing the fundamental building blocks of fiber optic sensors and pointing out the many connections between these elements and fiber optic sensor technology. Subsequent chapters cover: * Extrinsic or hybrid fiber optic sensors * Intensity sensors for monitoring temperature, position, and other environmental aspects * The Fabry-Perot based fiber optic sensor * The Mach-Zehnder interferometer * The Sagnac interferometer and fiber gyroscopes * Displacement fiber optic sensors * Polarization sensors * Industrial applications of fiber optic sensors * Fiber optic smart structures Pooling the expertise of leading professionals, Fiber Optic Sensors supplies an integral resource for understanding a key area of optical science and telecommunications.
Provides a particularly good discussion of the electromagnetics of light in bounded media (i.e., fibers). * The only book that treats the two complementary topics, fiber and integrated optics. * A careful and thorough presentation of the topics that make it well suited for self-study. * Includes numerous figures, problems and worked-out solutions. * Discusses all the topics essential to modern optical communication systems including optical fibers, quantum electronics, optical amplifiers, and lasers among others. * Concludes with a chapter that applies the design skills developed throughout the book to realistic problems in fiber optic communication systems. * Heavily illustrated with over 300 figures specially formatted to aid in comprehension.
The discovery of the Fractional Fourier Transform and its role in optics and data management provides an elegant mathematical framework within which to discuss diffraction and other fundamental aspects of optical systems. This book explains how the fractional Fourier transform has allowed the generalization of the Fourier transform and the notion of the frequency transform. It will serve as the standard reference on Fourier transforms for many years to come.
Develops the underlying theory of acousto-optics from first principles, formulating results suitable for subsequent calculations and design. Special attention is given to design procedures for the entire range of acousto-optic devices and a wide variety of applications for these devices is also described. Further topics include bulk wave and thin-film devices, transducer theory, isotropic and birefringent interaction. Suitable for use as a textbook or practical design handbook, includes generous problem sections illustrating important characteristics of TeO2, LN, and GaP.
The fundamental science and latest applications of liquid crystal technologies An excellent professional reference and superior upper-level student text, Liquid Crystals, Second Edition is a comprehensive treatment of all the basic principles underlying the unique physical and optical properties of liquid crystals. Written by an internationally known pioneer in the nonlinear optics of liquid crystals, the book also provides a unique, in-depth discussion of the mechanisms and theoretical principles behind all major nonlinear optical phenomena occurring in liquid crystals. Fully revised and updated with the latest developments, this Second Edition covers: Basic physics and optical properties of liquid crystals Nematics, as well as other mesophases such as smectics, ferroelectrics, and cholesterics Fundamentals of liquid crystals for electro-optics, and display and non-display related applications Various theoretical and computational techniques used in describing optical propagation through liquid crystals and anisotropic materials Nonlinear optics of liquid crystals, including updated literature reviews and fundamental discussions Structured to follow a natural sequence of instruction, from basic physics to the latest specialized optical, electro-optical, and nonlinear applications, Liquid Crystals is a textbook that grounds students in the fundamentals before introducing them to the most current discoveries in the field. Written in a clear, reader-friendly style, it features numerous figures, tables, and illustrations, including important and hard-to-find device and material parameters. Invaluable to students, researchers, and those working with liquid crystal applications in various industries, Liquid Crystals, Second Edition is the most comprehensive and up-to-date resource available.
Recent earthquakes and space program-related news serve as potent reminders of the uses fiber optic technology offers to an increasingly complex world. Like living organisms sensitive to subtle changes in the environment, buildings, structures, and space vehicles can be equipped to sense and react to their surroundings by means of hair-thin glass fiber sensors embedded in structural materials and capable of carrying information and measuring changes in stress and other environmental factors. Data is collected and transmitted to a central location, where the findings are assessed and damage corrected. Fiber Optic Smart Structures pools the expertise of thirty-three leading professionals, many of whom are pioneers in the field, and offers a comprehensive introduction to this fast growing technology. Beginning with a historical overview and a look at the background technology, the book goes on to discuss methods of embedding optical fibers in modern high-strength, lightweight composite materials; ingress and egress of optical fibers; and more specialized application concerns, including use of the Fabry-Perot interferometer and Bragg grating sensors. Lower cost options are considered in light of performance trade-offs, and broad area coverage through single-line stringing of multiple fiber sensors is compared with single and distributed sensor approaches. The last section of the book treats the use of fiber optic smart structures in a wide range of settings. Discussions include applications in environments where high temperature and ultrasonic waves play a role; in the aerospace industry, where changes in the structural integrity of the system demand real-time automatic changes; and a rapidly emerging new direction, earthquake-resistant buildings and, along similar lines, bridges that perform self-diagnostics. The first and only comprehensive professional reference in this important, emerging field, Fiber Optic Smart Structures is a major addition to the libraries of aerospace engineers, mechanical scientists, fiber optics researchers and engineers, architects, and structural engineers. It is also a first-rate graduate-level textbook. The first and only comprehensive reference on this important and emerging field... Fiber Optic Smart Structures is the ultimate resource for engineers, architects, researchers, and anyone with an interest in this promising new technology. Thirty-three of the world's leading professionals--many of them pioneers in the field--bring you comprehensive coverage of every important aspect of fiber optic smart structure technology, including its history and evolution, background technologies, structural and assembly issues, sensing devices, and numerous applications. Topics of particular interest include: * An introduction to advanced composite materials associated with fiber optic smart structures * Structural integrity of materials containing embedded optical fibers * Methods of fiber optic ingress and egress for smart structures * Detailed descriptions of the most useful and promising fiber optic sensors, including those based on the Fabry-Perot interferometer and Bragg grating * Extended discussions of applications, including the use of fiber optic smart structures in high-temperature environments, quality control procedures, aircraft and space vehicles, earthquake-resistant buildings, and bridges that perform self-diagnostics * And much more

Best Books