In this new edition much of the material is new or rewritten but the purpose and style of the first edition are retained. Particular emphasis is given to information obtained by experiment and observation, in addition to analysis of the equations of motion, the book's primary concern is to convey fundamental understanding of the behaviour of fluids in motion. New topics in this second edition include double diffusive convection and modern ideas about dynamical chaos - mainly but not only in relation to transition to turbulence. The discussion of instabilities has been restructured and the treatments of separation and of convection in horizontal layers much extended.
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
This textbook provides a clear and concise introduction to both theory and application of fluid dynamics, suitable for all undergraduates coming to the subject for the first time. It has a wide scope, with frequent references to experiments, and numerous exercises illustrating the main ideas.
This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.
The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.
In recent years, stylized forms of the Boltzmann equation, now going by the name of "Lattice Boltzmann equation" (LBE), have emerged, which relinquish most mathematical complexities of the true Boltzmann equation without sacrificing physical fidelity in the description of many situations involving complex fluid motion. This book provides the first detailed survey of LBE theory and its major applications to date. Accessible to a broad audience of scientists dealing with complex system dynamics, the book also portrays future developments in allied areas of science (material science, biology etc.) where fluid motion plays a distinguished role.
The Nobel Laureate's monumental study surveys hydrodynamic and hydromagnetic stability as a branch of experimental physics, surveying thermal instability of a layer of fluid heated from below, Benard problem, more.
This second edition of Physical Hydrodynamics is a deeply enriched version of a classical textbook on fluid dynamics. It retains the same pedagogical spirit, based on the authors' experience of teaching university students in the physical sciences, and emphasizes an experimental (inductive) approach rather than the more formal approach found in many textbooks in the field. Today the field is more widely open to other experimental sciences: materials,environmental, life, and earth sciences, as well as the engineering sciences. Representative examples from these fields have been included where possible, while retaining a general presentation in each case.
Cavitation and Bubble Dynamics deals with the fundamental physical processes of bubble dynamics and the phenomenon of cavitation. It is ideal for graduate students and research engineers and scientists, and a basic knowledge of fluid flow and heat transfer is assumed. The analytical methods presented are developed from basic principles. The book begins with a chapter on nucleation and describes both the theory and observations in flowing and non-flowing systems. Three chapters provide a systematic treatment of the dynamics and growth, collapse, or oscillation of individual bubbles in otherwise quiescent fluids. The following chapters summarise the motion of bubbles in liquids, describe some of the phenomena that occur in homogeneous bubbly flows, with emphasis on cloud cavitation, and summarise some of the experimental observations of cavitating flows. The last chapter provides a review of free streamline methods used to treat separated cavity flows with large attached cavities.
This second edition of Physical Hydrodynamics is a deeply enriched version of a classical textbook on fluid dynamics. It retains the same pedagogical spirit, based on the authors' experience of teaching university students in the physical sciences, and emphasizes an experimental (inductive) approach rather than the more formal approach found in many textbooks in the field. Today the field is more widely open to other experimental sciences: materials,environmental, life, and earth sciences, as well as the engineering sciences. Representative examples from these fields have been included where possible, while retaining a general presentation in each case.
This text examines the distinctive physics of plasmas--the form in which most visible matter in the universe is found. The book provides an introduction to plasma particle dynamics, plasma waves, magnetohydrodynamics, plasma kinetic theory, two-fluid theory, and non-linear plasma physics. Rather than emphasizing mathematical considerations, this concise volume concentrates on underlying physical principles. The most advanced background knowledge required consists of Maxwell's equations, and these are reviewed in the introduction. The text will be useful to undergraduates in physics as well as graduates studying astrophysics, nuclear physics, and plasma physics.
Fluid Dynamics via Examples and Solutions provides a substantial set of example problems and detailed model solutions covering various phenomena and effects in fluids. The book is ideal as a supplement or exam review for undergraduate and graduate courses in fluid dynamics, continuum mechanics, turbulence, ocean and atmospheric sciences, and related areas. It is also suitable as a main text for fluid dynamics courses with an emphasis on learning by example and as a self-study resource for practicing scientists who need to learn the basics of fluid dynamics. The author covers several sub-areas of fluid dynamics, types of flows, and applications. He also includes supplementary theoretical material when necessary. Each chapter presents the background, an extended list of references for further reading, numerous problems, and a complete set of model solutions.
Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Includes a new chapter on practical guidelines for mesh generation Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD
An advanced overview of the fundamental physical principles underlying all engineering disciplines, with end-of-chapter problems and practical real-world applications.
This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.
Lectures on Geophysical Fluid Dynamics offers an introduction to several topics in geophysical fluid dynamics, including the theory of large-scale ocean circulation, geostrophic turbulence, and Hamiltonian fluid dynamics. Since each chapter is a self-contained introduction to its particular topic, the book will be useful to students and researchers in diverse scientific fields.
Covered from the vantage point of a user of a commercial flow package, Essentials of Computational Fluid Dynamics provides the information needed to competently operate a commercial flow solver. This book provides a physical description of fluid flow, outlines the strengths and weaknesses of computational fluid dynamics (CFD), presents the basics of the discretization of the equations, focuses on the understanding of how the flow physics interact with a typical finite-volume discretization, and highlights the approximate nature of CFD. It emphasizes how the physical concepts (mass conservation or momentum balance) are reflected in the CFD solutions while minimizing the required mathematical/numerical background. In addition, it uses cases studies in mechanical/aero and biomedical engineering, includes MATLAB and spreadsheet examples, codes and exercise questions. The book also provides practical demonstrations on core principles and key behaviors and incorporates a wide range of colorful examples of CFD simulations in various fields of engineering. In addition, this author: Introduces basic discretizations, the linear advection equation, and forward, backward and central differences Proposes a prototype discretization (first-order upwind) implemented in a spreadsheet/MATLAB example that highlights the diffusive character Looks at consistency, truncation error, and order of accuracy Analyzes the truncation error of the forward, backward, central differences using simple Taylor analysis Demonstrates how the of upwinding produces Artificial Viscosity (AV) and its importance for stability Explains how to select boundary conditions based on physical considerations Illustrates these concepts in a number of carefully discussed case studies Essentials of Computational Fluid Dynamics provides a solid introduction to the basic principles of practical CFD and serves as a resource for students in mechanical or aerospace engineering taking a first CFD course as well as practicing professionals needing a brief, accessible introduction to CFD.
Geared toward advanced undergraduate and graduate students in applied mathematics, engineering, and the physical sciences, this introductory text covers kinematics, momentum principle, Newtonian fluid, compressibility, and other subjects. 1971 edition.
This book introduces the subject of fluid dynamics from the first principles.

Best Books