Originally published: Philadelphia: Saunders College Publishing, 1989; slightly corrected.
Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.
This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.
Superb one-year course in classical topology. Topological spaces and functions, point-set topology, much more. Examples and problems. Bibliography. Index.
Starting with the first principles of topology, this volume advances to general analysis. Three levels of examples and problems make it appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important concepts, and a 40-page appendix includes tables of theorems and counterexamples. 1970 edition.
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Suitable for a complete course in topology, this text also functions as a self-contained treatment for independent study. Additional enrichment materials make it equally valuable as a reference. 1964 edition.
Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Includes historical notes and over 340 detailed exercises. 1970 edition. Includes 27 figures.
Students must prove all of the theorems in this undergraduate-level text, which features extensive outlines to assist in study and comprehension. Thorough and well-written, the treatment provides sufficient material for a one-year undergraduate course. The logical presentation anticipates students' questions, and complete definitions and expositions of topics relate new concepts to previously discussed subjects. Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text. Dover (2014) republication of the edition originally published by The Williams & Wilkins Company, Baltimore, 1975. See every Dover book in print at www.doverpublications.com
"The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure," noted the Bulletin of the American Mathematical Society upon the 1955 publication of John L. Kelley's General Topology. This comprehensive treatment for beginning graduate-level students immediately found a significant audience, and it remains a highly worthwhile and relevant book for students of topology and for professionals in many areas. A systematic exposition of the part of general topology that has proven useful in several branches of mathematics, this volume is especially intended as background for modern analysis. An extensive preliminary chapter presents mathematical foundations for the main text. Subsequent chapters explore topological spaces, the Moore-Smith convergence, product and quotient spaces, embedding and metrization, and compact, uniform, and function spaces. Each chapter concludes with an abundance of problems, which form integral parts of the discussion as well as reinforcements and counter examples that mark the boundaries of possible theorems. The book concludes with an extensive index that provides supplementary material on elementary set theory.
Introductory text for first-year math students uses intuitive approach, bridges the gap from familiar concepts of geometry to topology. Exercises and Problems. Includes 101 black-and-white illustrations. 1974 edition.
Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition.
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

Best Books