All chemistry students need a basic understanding of quantum theory and its applications in atomic and molecular structure and spectroscopy. This book provides a gentle introduction to the subject with the required background in physics and mathematics kept to a minimum. It develops the basic concepts needed as background. The emphasis throughout is on the physical concepts and their application in chemistry, especially to atoms and to the periodic table of elements
An introduction to undergraduate level physical chemistry that should bridge the increasing gap between school or college and university. It aims to stimulate students to extend their knowledge from A/AS/GNVQ level to the ideas essential for university ent
This physical chemistry primer is specifically designed to introduce physics to undergraduate chemistry students, and show them how a knowledge of physics is relevant to their degree.
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subjectarea is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research.The learning features provided, including end of book problems and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams and margin notes help to enhance a student's understanding of these essential areas of chemistry.Statistical Thermodynamics gives a concise and accessible account of this fundamental topic by emphasizing the underlying physical chemistry, and using this to introduce the mathematics in an approachable way. The material is presented in short, self-contained sections making it flexible to teachand learn from, and concludes with the application of the theory to real systems.Online Resource Centre: The Online Resource Centre to accompany Statistical Thermodynamics features: For registered adopters of the text: * Figures from the book available to download For students: * Worked solutions to the questions and problems at the end of the book.* Multiple-choice questions for self-directed learning
"This book confronts the student with the problem of synthesizing molecules given nothing but their structure. The synthon approach is used: disconnections breaking the molecule into useable fragments (synthons) are introduced to the student, who then teaches himself how to use them by solving a series of problems of steadily increasing difficulty"- Cover.
This text spans a large range of mathematics, from basic algebra to calculus and Fourier transforms. Its tutorial style bridges the gap between school and university while its conciseness provides a useful reference for the professional.
An understanding of the energy levels of atoms and molecules is an essential foundation for the study of physical chemistry. This short text provides students at the start of their university chemistry courses with a clear and accessible introduction to electronic structure and quantized mechanics and spectroscopy in second and third year courses. All students on first courses in spectroscopy will find this readable, lively account to be invaluable aid to their study.
The most non-trivial of the established microscopic theories of physics is QCD: the theory of the strong interaction. A critical link between theory and experiment is provided by the methods of perturbative QCD, notably the well-known factorization theorems. Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. As well as giving a mathematical treatment, the book relates the concepts to experimental data, giving strong motivations for the methods. It also examines in detail transverse-momentum-dependent parton densities, an increasingly important subject not normally treated in other books. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers wanting a clear account of the subject.
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics.
This book presents a concise introduction to an emerging and increasingly important topic, the theory of quantum computing. The development of quantum computing exploded in 1994 with the discovery of its use in factoring large numbers--an extremely difficult and time-consuming problem when using a conventional computer. In less than 300 pages, the authors set forth a solid foundation to the theory, including results that have not appeared elsewhere and improvements on existing works. The book starts with the basics of classical theory of computation, including NP-complete problems and the idea of complexity of an algorithm. Then the authors introduce general principles of quantum computing and pass to the study of main quantum computation algorithms: Grover's algorithm, Shor's factoring algorithm, and the Abelian hidden subgroup problem. In concluding sections, several related topics are discussed (parallel quantum computation, a quantum analog of NP-completeness, and quantum error-correcting codes). This is a suitable textbook for a graduate course in quantum computing. Prerequisites are very modest and include linear algebra, elements of group theory and probability, and the notion of an algorithm (on a formal or an intuitive level). The book is complete with problems, solutions, and an appendix summarizing the necessary results from number theory.
Clear, comprehensive graduate-level account of basic principles involved in all quantum optical resonance phenomena, hailed in Contemporary Physics as "a valuable contribution to the literature of non-linear optics." 53 illustrations.
Nuclear Magnetic Resonance (NMR) spectroscopy is the most important characterization technique in synthetic chemistry today. By giving a simple overview of the relevant theory, in non-mathematical terms, and avoiding the 'pattern recognition' approach frequently adopted, this book demystifies NMR. It contains examples from many different areas of Inorganic Chemistry which are closely related to the theory described.
From quarks to computing, this fascinating introduction covers every element of the quantum world in clear and accessible language. Drawing on a wealth of expertise to explain just what a fascinating field quantum physics is, Rae points out that it is not simply a maze of technical jargon and philosophical ideas, but a reality which affects our daily lives.
This is a new undergraduate textbook on physical chemistry by Horia Metiu published as four separate paperback volumes. These four volumes on physical chemistry combine a clear and thorough presentation of the theoretical and mathematical aspects of the subject with examples and applications drawn from current industrial and academic research. By using the computer to solve problems that include actual experimental data, the author is able to cover the subject matter at a practical level. The books closely integrate the theoretical chemistry being taught with industrial and laboratory practice. This approach enables the student to compare theoretical projections with experimental results, thereby providing a realistic grounding for future practicing chemists and engineers. Each volume of Physical Chemistry includes Mathematica¬ and Mathcad¬ Workbooks on CD-ROM. Metiu's four separate volumes-Thermodynamics, Statistical Mechanics, Kinetics, and Quantum Mechanics-offer built-in flexibility by allowing the subject to be covered in any order. These textbooks can be used to teach physical chemistry without a computer, but the experience is enriched substantially for those students who do learn how to read and write Mathematica¬ or Mathcad¬ programs. A TI-89 scientific calculator can be used to solve most of the exercises and problems.
The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques, which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data, and a concise discussion of numerical resummation through parton showers, which form the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions, which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC, and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.
In The Foundations of Quantum Mechanics - Historical Analysis and Open Questions, leading Italian researchers involved in different aspects of the foundations and history of quantum mechanics are brought together in an interdisciplinary debate. The book therefore presents an invaluable overview of the state of Italian work in the field at this moment, and of the open problems that still exist in the foundations of the theory. Audience: Physicists, logicians, mathematicians and epistemologists whose research concerns the historical analysis of quantum mechanics.
This classic book gives, in extensive tables, the irreducible representations of the crystallographic point groups and space groups. These are useful in studying the eigenvalues and eigenfunctions of a particle or quasi-particle in a crystalline solid. The theory is extended to the corepresentations of the Shubnikov groups.

Best Books