Completely rewritten to enhance clarity, this third edition provides engineers with a strong understanding of the field. With the help of an additional co–author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration, and centrifugation, including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well. In addition, frequent references are made to the software products and simulators that will help engineers find the solutions they need.
Separation Process Principles with Applications Using Process Simulator, 4th Edition is the most comprehensive and up-to-date treatment of the major separation operations in the chemical industry. The 4th edition focuses on using process simulators to design separation processes and prepares readers for professional practice. Completely rewritten to enhance clarity, this fourth edition provides engineers with a strong understanding of the field. With the help of an additional co-author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration and centrifugation including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well.
Completely rewritten to enhance clarity, this third edition provides engineers with a strong understanding of the field. With the help of an additional co-author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration, and centrifugation, including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well. In addition, frequent references are made to the software products and simulators that will help engineers find the solutions they need.
Improvements in software, instrumentation, and feedback control as well as deepening linkages between fundamental aspects of process technology have vastly changed the practice of industrial process control. Newcomers to the field must have a strong understanding of the new demands and capabilities of modern process control operations. Reflecting these changes, Introduction to Process Control infuses traditional topics with industry-based practices that provide more integrated process operation, control, and information systems. The authors adopt a thoughtfully conceived approach that follows a "Continuing Problem" throughout the text, adding new concepts and strategies to the example, which culminates in a complete control design strategy. This fully realized system is implemented in MATLAB®, with software downloads available from the CRC Web site. This approach not only provides seamless continuity, but also addresses the plantwide control problem and engenders hands-on, step-by-step understanding of how the concepts apply to real processes. The book introduces data processing and reconciliation along with process monitoring as integral components of overall control system architecture. Along with an introduction to modern architectures of industrial computer control systems, Introduction to Process Control offers unique and unparalleled coverage of the expanded role of process control in modern industry, from modeling the process to implementing a plant-wide system.
Chemical separations are of central importance in many areas of environmental science, whether it is the clean up of polluted water or soil, the treatment of discharge streams from chemical processes, or modification of a specific process to decrease its environmental impact. This book is an introduction to chemical separations, focusing on their use in environmental applications. The authors first discuss the general aspects of separation technology as a unit operation. They also describe how property differences are used to generate separations, the use of separating agents, and the selection criteria for particular separation techniques. The general approach for each technology is to present the chemical and/or physical basis for the process and explain how to evaluate it for design and analysis. The book contains many worked examples and homework problems. It is an ideal textbook for undergraduate and graduate students taking courses on environmental separations or environmental engineering.
Chemical Process Equipment is a results-oriented reference for engineers who specify, design, maintain or run chemical and process plants. This book delivers information on the selection, sizing and operation of process equipment in a format that enables quick and accurate decision making on standard process and equipment choices, saving time, improving productivity, and building understanding. Coverage emphasizes common real-world equipment design rather than experimental or esoteric and focuses on maximizing performance. Legacy reference for chemical and related engineers who work with vendors to design, specify and make final equipment selection decisions Copious examples of successful applications, with supporting schematics and data to illustrate the functioning and performance of equipment Provides equipment rating forms and manufacturers’ data, worked examples, valuable shortcut methods, and rules of thumb to demonstrate and support the design process Heavily illustrated with line drawings and schematics to aid understanding, as well as graphs and tables to illustrate performance data
"Process design is the focal point of chemical engineering practice: the creative activity through which engineers continuously improve facility operations to create products that enhance life. Effective chemical engineering design requires students to integrate a broad spectrum of knowledge and intellectual skills, so they can analyze both the big picture and minute details - and know when to focus on each. Through three previous editions, this book has established itself as the leading resource for students seeking to apply what they've learned in real-world, open-ended process problems. The authors help students hone and synthesize their design skills through expert coverage of preliminary equipment sizing, flowsheet optimization, economic evaluation, operation and control, simulation, and other key topics. This new Fourth Edition is extensively updated to reflect new technologies, simulation techniques, and process control strategies, and to include new pedagogical features including concise summaries and end-of-chapter lists of skills and knowledge."--pub. desc.
The Definitive, Up-to-Date, Student-Friendly Guide to Separation Process Engineering—With More Mass Transfer Coverage and a New Chapter on Crystallization Separation Process Engineering, Fourth Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. In this completely updated edition, Phillip C. Wankat teaches each key concept through detailed, realistic examples using real data—including up-to-date simulation practice and spreadsheet-based exercises. Wankat thoroughly covers each separation process, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. This edition provides expanded coverage of mass transfer and diffusion, so faculty can cover separations and mass transfer in one course. Detailed discussions of liquid-liquid extraction, adsorption, chromatography, and ion exchange prepare students for advanced work. Wankat presents coverage of membrane separations, including gas permeation, reverse osmosis, ultrafiltration, pervaporation, and applications. An updated chapter on economics and energy conservation in distillation adds coverage of equipment costs. This edition contains more than 300 new, up-to-date homework problems, extensively tested in undergraduate courses at Purdue University and the University of Canterbury (New Zealand). Coverage includes New chapter on crystallization from solution, including equilibrium, chemical purity, crystal size distribution, and pharmaceutical applications Thirteen up-to-date Aspen Plus process simulation labs, adaptable to any simulator Eight detailed Aspen Chromatography labs Extensive new coverage of ternary stage-by-stage distillation calculations Fraction collection and multicomponent calculations for simple batch distillation New mass transfer analysis sections on numerical solution for variable diffusivity Mass transfer to expanding or contracting objects, including ternary mass transfer Expanded coverage of pervaporation Updated Excel spreadsheets offering more practice with distillation, diffusion, mass transfer, and membrane separation problems
Offering a modern, process-oriented approach emphasizing process control scheme development instead of extended coverage of LaPlace space descriptions of process dynamics, this text focuses on aspects that are most important for process engineering in the 21st century. Instead of starting with the controller, the book starts with the process and moves on to how basic regulatory control schemes can be designed to achieve the process’ objectives while maintaining stable operations. In addition to continuous control concepts, process and control system dynamics are embedded into the text with each new concept presented. The book also includes sections on batch and semi-batch processes and safety automation within each concept area. It discusses the four most common process control loops—feedback, feedforward, ratio, and cascade—and discusses application of these techniques for process control schemes for the most common types of unit operations. It also discusses more advanced and less commonly used regulatory control options such as override, allocation, and split range controllers, includes an introduction to higher level automation functions, and provides guidance for ways to increase the overall safety, stability, and efficiency for many process applications. It introduces the theory behind the most common types of controllers used in the process industries and also provides various additional plant automation-related subjects.
Originally published: New York: McGraw-Hill, 1971. 2nd ed. Includes a new introduction.
This text offers a modern view of process control in the context of today's technology. It provides the standard material in a coherent presentation and uses a notation that is more consistent with the research literature in process control. Topics that are unique include a unified approach to model representations, process model formation and process identification, multivariable control, statistical quality control, and model-based control. This book is designed to be used as an introductory text for undergraduate courses in process dynamics and control. In addition to chemical engineering courses, the text would also be suitable for such courses taught in mechanical, nuclear, industrial, and metallurgical engineering departments. The material is organized so that modern concepts are presented to the student but details of the most advanced material are left to later chapters. The text material has been developed, refined, and classroom tested over the last 10-15 years at the University of Wisconsin and more recently at the University of Delaware. As part of the course at Wisconsin, a laboratory has been developed to allow the students hands-on experience with measurement instruments, real time computers, and experimental process dynamics and control problems.
The Second Edition features new problems that engage readers in contemporary reactor design Highly praised by instructors, students, and chemical engineers, Introduction to Chemical Engineering Kinetics & Reactor Design has been extensively revised and updated in this Second Edition. The text continues to offer a solid background in chemical reaction kinetics as well as in material and energy balances, preparing readers with the foundation necessary for success in the design of chemical reactors. Moreover, it reflects not only the basic engineering science, but also the mathematical tools used by today’s engineers to solve problems associated with the design of chemical reactors. Introduction to Chemical Engineering Kinetics & Reactor Design enables readers to progressively build their knowledge and skills by applying the laws of conservation of mass and energy to increasingly more difficult challenges in reactor design. The first one-third of the text emphasizes general principles of chemical reaction kinetics, setting the stage for the subsequent treatment of reactors intended to carry out homogeneous reactions, heterogeneous catalytic reactions, and biochemical transformations. Topics include: Thermodynamics of chemical reactions Determination of reaction rate expressions Elements of heterogeneous catalysis Basic concepts in reactor design and ideal reactor models Temperature and energy effects in chemical reactors Basic and applied aspects of biochemical transformations and bioreactors About 70% of the problems in this Second Edition are new. These problems, frequently based on articles culled from the research literature, help readers develop a solid understanding of the material. Many of these new problems also offer readers opportunities to use current software applications such as Mathcad and MATLAB®. By enabling readers to progressively build and apply their knowledge, the Second Edition of Introduction to Chemical Engineering Kinetics & Reactor Design remains a premier text for students in chemical engineering and a valuable resource for practicing engineers.
Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.
Pinch analysis and related techniques are the key to design of inherently energy-efficient plants. This book shows engineers how to understand and optimize energy use in their processes, whether large or small. Energy savings go straight to the bottom line as increased profit, as well as reducing emissions. This is the key guide to process integration for both experienced and newly qualified engineers, as well as academics and students. It begins with an introduction to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature and the golden rules of pinch-based design to meet energy targets. The book shows how to extract the stream data necessary for a pinch analysis and describes the targeting process in depth. Other essential details include the design of heat exchanger networks, hot and cold utility systems, CHP (combined heat and power), refrigeration and optimization of system operating conditions. Many tips and techniques for practical application are covered, supported by several detailed case studies and other examples covering a wide range of industries, including buildings and other non-process situations. The only dedicated pinch analysis and process integration guide, fully revised and expanded supported by free downloadable energy targeting software The perfect guide and reference for chemical process, food and biochemical engineers, plant engineers and professionals concerned with energy optimisation, including building designers Covers the practical analysis of both new and existing systems, with ful details of industrial applications and case studies
A staple in any chemical engineering curriculum New edition has a stronger emphasis on membrane separations, chromatography and other adsorptive processes, ion exchange Discusses many developing topics in more depth in mass transfer operations, especially in the biological engineering area Covers in more detail phase equilibrium since distillation calculations are completely dependent on this principle Integrates computational software and problems using Mathcad Features 25-30 problems per chapter
The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: Effect of boron on humans and plants Separation of boron by ion exchange and adsorption processes Separation of boron by membrane processes Simulation and optimization studies for boron separation Provides in one source a state-of-the-art overview of this compelling area Reviews the environmental impact of boron before introducing emerging boron separation processes Includes simulation and optimization studies for boron separation processes Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater
The fourth edition of A Guide to Writing as an Engineer updates Beer and McMurrey’s popular book on communication and technical writing for engineers. Used predominantly in freshmen engineering survey courses, the text is also applicable for specific courses on engineering writing or technical communication later in the curriculum. A Guide to Writing as an Engineer deals with a variety of topics ranging from important writing concepts that apply to professional engineers, to content, organization, format, and style of various kinds of engineering writing. The book also covers oral presentations, research techniques, ethics, and proper citation methods. Beer remains a practical, handy book that can function not only as a classroom textbook, but also as a reference and guide for writing and research, for practicing engineers.
This volume provides concise, complete, single-volume coverage of the full spectrum of techniques for chemical separations, and focuses on a modern approach that integrates classical solutions with computer methods. Provides complete coverage of distillation, absorption, and extraction methods; and explains stage-by-stage techniques, matrix methods, and short-cut methods. MARKETS: For undergraduate Chemical Engineering students.
Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice Magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances. This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows.

Best Books