This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div
This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.
Dieses Buch ist bis heute eine der populärsten Darstellungen der Relativitätstheorie geblieben. In der vorliegenden Version haben J. Ehlers und M. Pössel vom Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Golm/Potsdam den Bornschen Text kommentiert und einen den anschaulichen, aber präzisen Stil Borns wahrendes, umfangreiches Ergänzungskapitel hinzugefügt, das die stürmische Entwicklung der Relativiatätstheorie bis hin zu unseren Tagen nachzeichnet. Eingegangen wird auf Gravitationswellen und Schwarze Löcher, auf neuere Entwicklungen der Kosmologie, auf Ansätze zu einer Theorie der Quantengravitation und auf die zahlreichen raffinierten Experimente, welche die Gültigkeit der Einsteinschen Theorie mit immer größerer Genauigkeit bestätigt haben. Damit bleibt dieses Buch nach wie vor einer der unmittelbarsten Zugänge zur Relativitätstheorie für alle die sich für eine über das rein populärwissenschaftliche hinausgehende Einführung interessieren.
Ist die Mathematik frei von Widersprüchen? Gibt es Wahrheiten jenseits des Beweisbaren? Ist es möglich, unser mathematisches Wissen in eine einzige Zahl hineinzucodieren? Die moderne mathematische Logik des zwanzigsten Jahrhunderts gibt verblüffende Antworten auf solche Fragen. Das vorliegende Buch entführt Sie auf eine Reise durch die Kerngebiete der mathematischen Logik, hin zu den Grenzen der Mathematik. Unter anderem werden die folgenden Themen behandelt: Geschichte der mathematischen Logik, formale Systeme, axiomatische Zahlentheorie und Mengenlehre, Beweistheorie, die Gödel‘schen Unvollständigkeitssätze, Berechenbarkeitstheorie, algorithmische Informationstheorie, Modelltheorie. Das Buch enthält zahlreiche zweifarbige Abbildungen und mehr als 70 Aufgaben (mit Lösungen auf der Website zum Buch). Für die dritte Auflage wurde das Kapitel ‚Modelltheorie‘ um eine Beschreibung der von Paul Cohen entwickelten Forcing-Technik ergänzt.
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit
The first part of this advanced-level text covers pure set theory, and the second deals with applications and advanced topics (point set topology, real spaces, Boolean algebras, infinite combinatorics and large cardinals). 1979 edition.
This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
This unique approach maintains that set theory is the primary mechanism for ideological and theoretical unification in modern mathematics, and its technically informed discussion covers a variety of philosophical issues. 1990 edition.
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.

Best Books