This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div
Dieses Buch ist bis heute eine der populärsten Darstellungen der Relativitätstheorie geblieben. In der vorliegenden Version haben J. Ehlers und M. Pössel vom Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Golm/Potsdam den Bornschen Text kommentiert und einen den anschaulichen, aber präzisen Stil Borns wahrendes, umfangreiches Ergänzungskapitel hinzugefügt, das die stürmische Entwicklung der Relativiatätstheorie bis hin zu unseren Tagen nachzeichnet. Eingegangen wird auf Gravitationswellen und Schwarze Löcher, auf neuere Entwicklungen der Kosmologie, auf Ansätze zu einer Theorie der Quantengravitation und auf die zahlreichen raffinierten Experimente, welche die Gültigkeit der Einsteinschen Theorie mit immer größerer Genauigkeit bestätigt haben. Damit bleibt dieses Buch nach wie vor einer der unmittelbarsten Zugänge zur Relativitätstheorie für alle die sich für eine über das rein populärwissenschaftliche hinausgehende Einführung interessieren.
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002
Krone der Schöpfung? Vor 100 000 Jahren war der Homo sapiens noch ein unbedeutendes Tier, das unauffällig in einem abgelegenen Winkel des afrikanischen Kontinents lebte. Unsere Vorfahren teilten sich den Planeten mit mindestens fünf weiteren menschlichen Spezies, und die Rolle, die sie im Ökosystem spielten, war nicht größer als die von Gorillas, Libellen oder Quallen. Vor 70 000 Jahren dann vollzog sich ein mysteriöser und rascher Wandel mit dem Homo sapiens, und es war vor allem die Beschaffenheit seines Gehirns, die ihn zum Herren des Planeten und zum Schrecken des Ökosystems werden ließ. Bis heute hat sich diese Vorherrschaft stetig zugespitzt: Der Mensch hat die Fähigkeit zu schöpferischem und zu zerstörerischem Handeln wie kein anderes Lebewesen. Anschaulich, unterhaltsam und stellenweise hochkomisch zeichnet Yuval Harari die Geschichte des Menschen nach und zeigt alle großen, aber auch alle ambivalenten Momente unserer Menschwerdung.
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.
The first part of this advanced-level text covers pure set theory, and the second deals with applications and advanced topics (point set topology, real spaces, Boolean algebras, infinite combinatorics and large cardinals). 1979 edition.
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Ist die Mathematik frei von Widersprüchen? Gibt es Wahrheiten jenseits des Beweisbaren? Ist es möglich, unser mathematisches Wissen in eine einzige Zahl hineinzucodieren? Die moderne mathematische Logik des zwanzigsten Jahrhunderts gibt verblüffende Antworten auf solche Fragen. Das vorliegende Buch entführt Sie auf eine Reise durch die Kerngebiete der mathematischen Logik, hin zu den Grenzen der Mathematik. Unter anderem werden die folgenden Themen behandelt: Geschichte der mathematischen Logik, formale Systeme, axiomatische Zahlentheorie und Mengenlehre, Beweistheorie, die Gödel‘schen Unvollständigkeitssätze, Berechenbarkeitstheorie, algorithmische Informationstheorie, Modelltheorie. Das Buch enthält zahlreiche zweifarbige Abbildungen und mehr als 70 Aufgaben (mit Lösungen auf der Website zum Buch). Für die dritte Auflage wurde das Kapitel ‚Modelltheorie‘ um eine Beschreibung der von Paul Cohen entwickelten Forcing-Technik ergänzt.
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
This unique approach maintains that set theory is the primary mechanism for ideological and theoretical unification in modern mathematics, and its technically informed discussion covers a variety of philosophical issues. 1990 edition.

Best Books