This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
"This book chronicles the work of mathematician Ernst Zermelo (1871-1953) and his development of set theory's crucial principle, the axiom of choice. It covers the axiom's formulation during the early 20th century, the controversy it engendered, and its current central place in set theory and mathematical logic. 1982 edition"--
The first part of this advanced-level text covers pure set theory, and the second deals with applications and advanced topics (point set topology, real spaces, Boolean algebras, infinite combinatorics and large cardinals). 1979 edition.
Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true. Set Theory and its Philosophy is a key text for philosophy, mathematical logic, and computer science.
This introductory treatment covers the basic concepts and machinery of stability theory. Full of examples, theorems, propositions, and problems, it is suitable for graduate students, professional mathematicians, and computer scientists. 1983 edition.
In this text for first-year graduate students, the authors provide an elementary exposition of some of the basic concepts of model theory--focusing particularly on the ultraproduct construction and the areas in which it is most useful. The book, which assumes only that its readers are acquainted with the rudiments of set theory, starts by developing the notions of Boolean algebra, propositional calculus, and predicate calculus. Model theory proper begins in the fourth chapter, followed by an introduction to ultraproduct construction, which includes a detailed look at its theoretic properties. An overview of elementary equivalence provides algebraic descriptions of the elementary classes. Discussions of completeness follow, along with surveys of the work of Jónsson and of Morley and Vaught on homogeneous universal models, and the results of Keisler in connection with the notion of a saturated structure. Additional topics include classical results of Gödel and Skolem, and extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages. Numerous exercises appear throughout the text.
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.
DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div
This book assembles some of the most important problems and solutions in theoretical computer science-from computability, logic, circuit theory, and complexity. The book presents these important results with complete proofs in an understandable form. It also presents previously open problems that have found (perhaps unexpected) solutions, and challenges the reader to pursue further active research in computer science.
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics. Contents:Peano ArithmeticZermelo–Fraenkel Set TheoryWell-Ordered SetsOrdinalsCardinalsRelativizationReflectionForcing NotionsGeneric ExtensionsForcing EqualityThe Fundamental TheoremForcing CHForcing ¬ CHFamilies of Entire Functions*Self-Homeomorphisms of βℕ \ ℕ, I*Pure States on B(H)*The Diamond PrincipleSuslin's Problem, I*Naimark's problem*A Stronger DiamondWhitehead's Problem, I*Iterated ForcingMartin's AxiomSuslin's Problem, II*Whitehead's Problem, II*The Open Coloring AxiomSelf-Homeomorphisms of βℕ \ ℕ, II*Automorphisms of the Calkin Algebra, I*Automorphisms of the Calkin Algebra, II*The Multiverse Interpretation Readership: Graduates and researchers in logic and set theory, general mathematical audience. Keywords:Forcing;Set Theory;Consistency;Independence;C*-AlgebraKey Features:A number of features combine to make this thorough and rigorous treatment of forcing surprisingly easy to follow. First, it goes straight into the core material on forcing, avoiding Godel constructibility altogether; second, key definitions are simplified, allowing for a less technical development; and third, further care is given to the treatment of metatheoretic issuesEach chapter is limited to four pages, making the presentation very readableA unique feature of the book is its emphasis on applications to problems outside of set theory. Much of this material is currently only available in the primary literatureThe author is a pioneer in the application of set-theoretic methods to C*-algebra, having solved (together with various co-authors) Dixmier's “prime versus primitive” problem, Naimark's problem, Anderson's conjecture about pure states on B(H), and the Calkin algebra outer automorphism problemReviews: “The author presents the basics of the theory of forcing in a clear and stringent way by emphasizing important technical details and simplifying some definitions and arguments. Moreover, he presents the content in a way that should help beginners to understand the central concepts and avoid common mistakes.” Zentralblatt MATH
This work is a sequel to the author's G?del's Incompleteness Theorems, though it can be read independently by anyone familiar with G?del's incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.
This unique approach maintains that set theory is the primary mechanism for ideological and theoretical unification in modern mathematics, and its technically informed discussion covers a variety of philosophical issues. 1990 edition.
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.
Based on Stanford University's well-known competitive exam, this excellent mathematics workbook offers students at both high school and college levels a complete set of problems, hints, and solutions. 1974 edition.
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.
An innovative problem-oriented introduction to set theory, this volume is intended for undergraduate courses in which students work in groups on projects and present their solutions to the class. The three-part treatment consists of problems, hints for their solutions, and complete answers. 1986 edition.