This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.
This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.
Was war noch mal die Catalan’sche Vermutung? Und woher kommt eigentlich das Wurzelsymbol? Was hat die Zahl Pi mit dem Sternenhimmel zu tun? Wer erfand das Gleichheitszeichen? Der britische Matheguru Ian Stewart breitet in diesem Band Schätze aus, die er in Jahrzehnten gesammelt hat: über 180 interessante Matherätsel, Lösungen, Spiele, Tricks, Geschichten, Anekdoten und Logeleien. Zudem ist Stewarts Schatztruhe mit interessanten historischen Exkursen angereichert, zum Beispiel einer kurzen Einführung in das Rechnen der Maya und der alten Ägypter und auch in die Vergangenheit unseres eigenen Rechnens: Wer erfand das Gleichheitszeichen – und warum? Ein Buch zum Blättern und Stöbern, zum Spaßhaben und Dazulernen, für Laien und für Fortgeschrittene.
Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.
Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."
Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.
Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit
Der Autor vermittelt logisches Grundwissen, fundamentale Beweisprinzipien und Methoden der Mathematik. Dabei geht er u. a. folgenden Fragen nach: Was unterscheidet endliche von unendlichen Mengen? Wie lassen sich die ganzen, rationalen und reellen Zahlen aus den natürlichen Zahlen konstruieren? Welche grundlegenden topologischen Eigenschaften besitzt die Menge der reellen Zahlen? Lassen sich die natürlichen oder reellen Zahlen vollständig axiomatisch beschreiben? Pflichtlektüre für alle Studierenden der Mathematik, Physik und Informatik.
Das Buch beginnt mit einem alten Zaubertrick - Man nehme eine 3-stellige Zahl, etwa 782, kehre sie um, ziehe die kleinere von der größeren ab und addiere dazu die Umkehrung. Also - 782 - 287 = 495, dann 495 + 594. Und schon ist man mitten in der Wunderwelt der Mathematik, denn das Ergebnis ist immer - 1089. Mit solchen und vielen weiteren Beispielen aus Alltag, Geschichte und Wissenschaft gelingt es David Acheson, die faszinierende Welt der Mathematik zu erschließen - ein geistreicher Überblick, eine für jeden verständliche Einführung.
Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.
Die Systemtheorie ist ein Versuch, Beschreibungen für Phänomene zu finden, die weder so einfach sind, dass sie kausal, noch so zufällig, dass sie statistisch beschrieben werden können. Es handelt sich um Phänomene der Selbstorganisation. Die Systemtheorie ist ein Versuch, eine Begrifflichkeit zu entwickeln, mit denen diese Phänomene beschrieben werden können, mit der der Beobachter zu begreifen vermag, dass er mit seinen Beschreibungen ein Teil der Welt ist und nicht in einem imaginären Außerhalb agiert. Die klassische Unterscheidung zwischen Subjekt und Objekt wird dabei unterlaufen und durch die Entdeckung einer Vielzahl von Beobachterpositionen in der Welt ersetzt.
Im Kopf eines Genies – der Bericht von einem mathematischen Abenteuer und der Roman eines sehr erfolgreichen Forschers Cédric Villani gilt als Kandidat für die begehrte Fields-Medaille, eine Art Nobelpreis für Mathematiker. Sie wird aber nur alle vier Jahre vergeben, und man muss unter 40 sein. Er hat also nur eine Chance. Unmöglich! Unmöglich? Fieberhaft macht er sich an die Arbeit. Jetzt erzählt er seine Geschichte, und ihm gelingt das Unglaubliche: Wir werden direkte Zeugen der Denkprozesse eines Mathematikers, und das, ohne die dazugehörigen Formeln verstehen zu müssen. Ein Buch, so einzigartig wie sein Autor.
Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Best Books