This volume is a collection of papers presented at the XIII International Workshop on Real and Complex Singularities, held from July 27–August 8, 2014, in São Carlos, Brazil, in honor of María del Carmen Romero Fuster's 60th birthday. The volume contains the notes from two mini-courses taught during the workshop: on intersection homology by J.-P. Brasselet, and on non-isolated hypersurface singularities and Lê cycles by D. Massey. The remaining contributions are research articles which cover topics from the foundations of singularity theory (including classification theory and invariants) to topology of singular spaces (links of singularities and semi-algebraic sets), as well as applications to topology (cobordism and Lefschetz fibrations), dynamical systems (Morse-Bott functions) and differential geometry (affine geometry, Gauss-maps, caustics, frontals and non-Euclidean geometries). This book is published in cooperation with Real Sociedad Matemática Española (RSME)
"Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces."--
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
​Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities.
This book describes recent progress in the topological study of plane curves. The theory of plane curves is much richer than knot theory, which may be considered the commutative version of the theory of plane curves. This study is based on singularity theory: the infinite-dimensional space of curves is subdivided by the discriminant hypersurfaces into parts consisting of generic curves of the same type. The invariants distinguishing the types are defined by their jumps at the crossings of these hypersurfaces. Arnold describes applications to the geometry of caustics and of wavefronts in symplectic and contact geometry. These applications extend the classical four-vertex theorem of elementary plane geometry to estimates on the minimal number of cusps necessary for the reversion of a wavefront and to generalizations of the last geometrical theorem of Jacobi on conjugated points on convex surfaces. These estimates open a new chapter in symplectic and contact topology: the theory of Lagrangian and Legendrian collapses, providing an unusual and far-reaching higher-dimensional extension of Sturm theory of the oscillations of linear combinations of eigenfunctions.
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
The new edition of this non-mathematical review of catastrophe theory contains updated results and many new or expanded topics including delayed loss of stability, shock waves, and interior scattering. Three new sections offer the history of singularity and its applications from da Vinci to today, a discussion of perestroika in terms of the theory of metamorphosis, and a list of 93 problems touching on most of the subject matter in the book.
This volume contains a multiplicity of approaches brought to bear on problems varying from the formation of caustics and the propagation of waves at a boundary, to the examination of viscous boundary layers. It examines the foundations of the theory of high- frequency electromagnetic waves in a dielectric or semiconducting medium. Nor are unifying themes entirely absent from nonlinear analysis: one chapter considers microlocal analysis, including paradifferential operator calculus, on Morrey spaces, and connections with various classes of partial differential equations.
Explores a wide range of singular phenomena. Provides mathematical tools for understanding them and highlights their common features.
This conference was held in Santiago de Compostela, Spain, July 10-14, 2000. This volume contains papers presented at the conference covering a broad range of topics in theoretical and applied wave propagation in the general areas of acoustics, electromagnetism, and elasticity. Both direct and inverse problems are well represented. This volume, along with the three previous ones, presents a state-of-the-art primer for research in wave propagation. The conference is conducted by the Institut National de Recherche en Informatique et en Automatique with the cooperation of SIAM.
Near the Horizon starts out by considering several optical phenomena that can occur when the sun is near the horizon. One can sometimes see objects that are actually below the horizon. Sometimes there seems to be a dark strip in the middle of the solar disk. These are a result of the way that the atmosphere affects the geometry of light rays. Broer starts his book with the Fermat principle (rays of light take least-time paths) and deduces from it laws for refraction and reflection; by expressing these as conservation laws, he can handle both the case of inhomogeneous layers of air and the case of continuous variation in the refraction index. A surprising application is the brachistochrone problem, in which the path of fastest descent is determined by studying how a light ray would behave in a "flat earth" atmosphere whose refraction index is determined by the gravitational potential. This leads to a very interesting chapter on the cycloid and its properties. The final chapters move from the elementary theory to a more sophisticated version in which the Fermat Principle leads to a Riemannian metric whose geodesics are the paths of light rays. This gives us an optics which is geometric in a new sense, and serves as a nice demonstration of the physical applicability of Riemannian geometry. The book is written in a very personal and engaging style. Broer is passionate about the subject and its history, and his passion helps carry the reader along. The result is readable and charming.
The emergence of singularity theory marks the return of mathematics to the study of the simplest analytical objects: functions, graphs, curves, surfaces. The modern singularity theory for smooth mappings, which is currently undergoing intensive development, can be thought of as a crossroad where the most abstract topics (such as algebraic and differential geometry and topology, complex analysis, invariant theory, and Lie group theory) meet the most applied topics (such as dynamical systems, mathematical physics, geometrical optics, mathematical economics, and control theory). The papers in this volume include reviews of established areas as well as presentations of recent results in singularity theory. The authors have paid special attention to examples and discussion of results rather than burying the ideas in formalism, notation, and technical details. The aim is to introduce all mathematicians--as well as physicists, engineers, and other consumers of singularity theory--to the world of ideas and methods in this burgeoning area.

Best Books