A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
This book presents a compendium of the urban layout maps of 2-mile square downtown areas of more than one hundred cities in developed and developing countries—all drawn at the same scale using high-resolution satellite images of Google Maps. The book also presents analytic studies using metric geometrical, topological (or network), and fractal measures of these maps. These analytic studies identify ordinaries, extremes, similarities, and differences in these maps; investigate the scaling properties of these maps; and develop precise descriptive categories, types and indicators for multidimensional comparative studies of these maps. The findings of these studies indicate that many geometric relations of the urban layouts of downtown areas follow regular patterns; that despite social, economic, and cultural differences among cities, the geometric measures of downtown areas in cities of developed and developing countries do not show significant differences; and that the geometric possibilities of urban layouts are vastly greater than those that have been realized so far in our cities.
Intended as a textbook for students taking a first graduate course in the subject, as well as for the general reference of interested research workers, this text discusses, in a readable form, developments from recently published work on certain broad topics not otherwise easily accessible, such as robust inference and the use of the bootstrap in a multivariate setting. A minimum background expected of the reader would include at least two courses in mathematical statistics, and certainly some exposure to the calculus of several variables together with the descriptive geometry of linear algebra.
Vorzügliches Lehrbuch über lineare Modelle für Studenten aus den Wirtschaftswissenschaften, aber auch der Mathematik, Informatik bis hin zur Psychologie. Kaum eine statistische Theorie ist so gut geeignet, die Fülle und Tiefe statistischer Ideen und Methoden zu zeigen, wie gerade die des Linearen Modells.
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
This book leaves the conventional view of chemical structures far behind: it demonstrates how a wealth of valuable, but hitherto unused information can be extracted from available structural data. For example, a single structure determination does not reveal much about a reaction pathway, but a sufficiently large number of comparable structures does. Finding the 'right' question is as important as is the intelligent use of crystallographic databases. Contributions by F.H. Allen, T.L. Blundell, I.D. Brown, H.B. Bürgi, J.D. Dunitz, L. Leiserowitz and others, authoritatively discuss the structure correlation method as well as illustrative results in detail, covering such apparently unrelated subjects as * Bond strength relations in soldis * Crystal structure prediction * Reaction pathways of organic molecules * Ligand/receptor interactions and enzyme mechanisms This book will be useful to the academic and industrial reader alike. It offers both fundamental aspects and diverse applications of what will surely become a powerful branch of structural chemistry.
The first edition of Geometric Morphometrics for Biologists has been the primary resource for teaching modern geometric methods of shape analysis to biologists who have a stronger background in biology than in multivariate statistics and matrix algebra. These geometric methods are appealing to biologists who approach the study of shape from a variety of perspectives, from clinical to evolutionary, because they incorporate the geometry of organisms throughout the data analysis. The second edition of this book retains the emphasis on accessible explanations, and the copious illustrations and examples of the first, updating the treatment of both theory and practice. The second edition represents the current state-of-the-art and adds new examples and summarizes recent literature, as well as provides an overview of new software and step-by-step guidance through details of carrying out the analyses. Contains updated coverage of methods, especially for sampling complex curves and 3D forms and a new chapter on applications of geometric morphometrics to forensics Offers a reorganization of chapters to streamline learning basic concepts Presents detailed instructions for conducting analyses with freely available, easy to use software Provides numerous illustrations, including graphical presentations of important theoretical concepts and demonstrations of alternative approaches to presenting results
Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.
Mathematical Tools for Applied Multivariate Analysis provides information pertinent to the aspects of transformational geometry, matrix algebra, and the calculus that are most relevant for the study of multivariate analysis. This book discusses the mathematical foundations of applied multivariate analysis. Organized into six chapters, this book begins with an overview of the three problems in multiple regression, principal components analysis, and multiple discriminant analysis. This text then presents a standard treatment of the mechanics of matrix algebra, including definitions and operations on matrices, vectors, and determinants. Other chapters consider the topics of eigenstructures and linear transformations that are important to the understanding of multivariate techniques. This book discusses as well the eigenstructures and quadratic forms. The final chapter deals with the geometric aspects of linear transformations. This book is a valuable resource for students.
Linear Statistical Models Developed and refined over a period of twenty years, the material in this book offers an especially lucid presentation of linear statistical models. These models lead to what is usually called "multiple regression" or "analysis of variance" methodology, which, in turn, opens up a wide range of applications to the physical, biological, and social sciences, as well as to business, agriculture, and engineering. Unlike similar books on this topic, Linear Statistical Models emphasizes the geometry of vector spaces because of the intuitive insights this approach brings to an understanding of the theory. While the focus is on theory, examples of applications, using the SAS and S-Plus packages, are included. Prerequisites include some familiarity with linear algebra, and probability and statistics at the postcalculus level. Major topics covered include: * Methods of study of random vectors, including the multivariate normal, chi-square, t and F distributions, central and noncentral * The linear model and the basic theory of regression analysis and the analysis of variance * Multiple regression methods, including transformations, analysis of residuals, and asymptotic theory for regression analysis. Separate sections are devoted to robust methods and to the bootstrap. * Simultaneous confidence intervals: Bonferroni, Scheffe, Tukey, and Bechhofer * Analysis of variance, with two- and three-way analysis of variance * Random component models, nested designs, and balanced incomplete block designs * Analysis of frequency data through log-linear models, with emphasis on vector space viewpoint. This chapter alone is sufficient for a course on the analysis of frequency data.
A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia′s long and influential career in statistics. A common theme unifying much of Mardia s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high–profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.
This market leading text provides experimental scientists in a wide variety of disciplines with a readable introduction to the statistical analysis of multivariate observations. Its overarching goal is to provide readers with the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. The Fourth Edition has been revised to take greater advantage of graphical displays of multivariate data and of statistical software programs that facilitate the analysis of complex data. *NEW - Graphical displays of multivariate data moved from Chapter 12 to chapter 1 and many new illustrations and graphics have been added to provide a more visual approach to the subject. *NEW - discussions of important topics including: - Detecting Outliers and Data Cleaning in Chapter 4.- Multivariate Quality Control in Chapter 5. - Monitoring Quality with Principal Components in Chapter 8.- Correspondence Analysis, Biplots, and Procrustes Analysis in Chapter 12. *NEW - Expanded coverage of the following topics: Generalized variance, Assessing normality and transformations to normality, Repeated measures designs, Model checking and other aspects of regre
Multivariate Statistics and Probability: Essays in Memory of Paruchuri R. Krishnaiah is a collection of essays on multivariate statistics and probability in memory of Paruchuri R. Krishnaiah (1932-1987), who made significant contributions to the fields of multivariate statistical analysis and stochastic theory. The papers cover the main areas of multivariate statistical theory and its applications, as well as aspects of probability and stochastic analysis. Topics range from finite sampling and asymptotic results, including aspects of decision theory, Bayesian analysis, classical estimation, regression, and time-series problems. Comprised of 35 chapters, this book begins with a discussion on the joint asymptotic distribution of marginal quantiles and quantile functions in samples from a multivariate population. The reader is then introduced to kernel estimators of density function of directional data; moment conditions for valid formal edgeworth expansions; and ergodicity and central limit theorems for a class of Markov processes. Subsequent chapters focus on minimal complete classes of invariant tests for equality of normal covariance matrices and sphericity; normed likelihood as saddlepoint approximation; generalized Gaussian random fields; and smoothness properties of the conditional expectation in finitely additive white noise filtering. This monograph should be of considerable interest to researchers as well as to graduate students working in theoretical and applied statistics, multivariate analysis, and random processes.
The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many ofthe articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with theAssociation for Computer Machinery (ACM).
This book is an introduction to the principles and methodology of modern multivariate statistical analysis. It is written for the user and potential user of multivariate techniques as well as for postgraduate students coming to the subject for the first time. The author's emphasis is problem-oriented; he stresses geometrical intuition in preference to algebraic manipulation. Mathematical sections which are not essential for a practical understanding of technique are clearly indicated so they may be skipped by nonspecialists. The book covers recent developments concerning discrete and mixed variable techniques, as well as continuous variable techniques and other new ideas. This is an up-to-date and very readable account--with a practical emphasis--for research workers in subjects as diverse as anthropology, education, industry, medicine, and taxonomy.
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.
The contributions in this volume, made by distinguished statisticians in several frontier areas of research in multivariate analysis, cover a broad field and indicate future directions of research. The topics covered include discriminant analysis, multidimensional scaling, categorical data analysis, correspondence analysis and biplots, association analysis, latent variable models, bootstrap distributions, differential geometry applications and others. Most of the papers propose generalizations or new applications of multivariate analysis. This volume will be of great interest to statisticians, probabilists, data analysts and scientists working in the disciplines such as biology, biometry, ecology, medicine, econometry, psychometry and marketing. It will be a valuable guide to professors, researchers and graduate students seeking new and promising lines of statistical research.

Best Books