"The true method of foreseeing the future of mathematics is to study its history and its actual state." With these words Henri Poincare began his presentation to the Fourth International Congress of Mathematicians at Rome in 1908. Although Poincare himself never actively pursued the history of mathematics, his remarks have given both historians of mathematics and working mathematicians a valuable methodological guideline, not so much for indulging in improbable prophecies about the future state of mathematics, as for finding in history the origins and moti va tions of contemporary theories, and for finding in the present the most fruitful statements of these theories. At the time Poincare spoke, at the beginning of this century, historical research in the various branches of rna thema tics was emerging with distinctive autonomy. In Germany the last volume of Cantor's monumental Vorlesungell iiber die Gesehiehte der Mathematik had just appeared, and many new specialized journals were appearing to complement those already in existence, from Enestrom's Bibliotheea mathematiea to Loria's Bollettino di bibliogra/ia e di storia delle seienze matematiehe. The annual Jahresberiehte of the German Mathematical Society included noteworthy papers of a historical nature, as did the Enzyklopadie der mathematisehen Wissenseha/ten, an imposing work constructed according to the plan of Felix Klein.
In dem Band werden Entstehung und Entwicklung der grundlegenden Begriffe der Analysis von der Antike bis heute ausführlich behandelt. Eingebettet sind diese Informationen in die Beschreibung historischer und kultureller Ereignisse, die Lebensläufe bedeutender Mathematiker und der von ihnen entwickelten Teilgebiete der Analysis. Zahlreiche gezeichnete Figuren veranschaulichen Begriffe, Lehrsätze und Methoden. Jedes Kapitel enthält eine Tabelle mit den Daten der wesentlichen Ergebnisse und Ereignisse aus 3000 Jahren Analysis.
Der Berliner Mathematiker Karl Weierstraß (1815-1897) lieferte grundlegende Beiträge zu den mathematischen Fachgebieten der Funktionentheorie, Algebra und Variationsrechnung. Er gilt weltweit als Begründer der mathematisch strengen Beweisführung in der Analysis. Mit seinem Namen verbunden ist zum Beispiel die berühmte Epsilon-Delta-Definition des Begriffs der Stetigkeit reeller Funktionen. Weierstraߒ Vorlesungszyklus zur Analysis in Berlin wurde weithin gerühmt und er lehrte teilweise vor 250 Hörern aus ganz Europa; diese starke mathematische Schule prägt bis heute die Mathematik. Aus Anlass seines 200. Geburtstags am 31. Oktober 2015 haben internationale Experten der Mathematik und Mathematikgeschichte diesen Festband zusammengestellt, der einen Einblick in die Bedeutung von Weierstraߒ Werk bis zur heutigen Zeit gibt. Die Herausgeber des Buches sind leitende Wissenschaftler am Weierstraß-Institut für Angewandte Analysis und Stochastik in Berlin, die Autoren eminente Mathematikhistoriker.
​Klaus Viertel legt die erste umfassende Übersicht zur Geschichte der gleichmäßigen Konvergenz in der Analysis des 19. Jahrhunderts vor. Der Autor trägt in umfassender Weise die verschiedenen Einzelentwicklungen dieses Begriffs kritisch zusammen und schafft es, den Stand der Forschung als mathematikhistorische Gesamtdarstellung um zahlreiche neue Ergebnisse zu bereichern.
Mathematics is one of the most basic -- and most ancient -- types of knowledge. Yet the details of its historical development remain obscure to all but a few specialists. The two-volume Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences recovers this mathematical heritage, bringing together many of the world's leading historians of mathematics to examine the history and philosophy of the mathematical sciences in a cultural context, tracing their evolution from ancient times to the twentieth century. In 176 concise articles divided into twelve parts, contributors describe and analyze the variety of problems, theories, proofs, and techniques in all areas of pure and applied mathematics, including probability and statistics. This indispensable reference work demonstrates the continuing importance of mathematics and its use in physics, astronomy, engineering, computer science, philosophy, and the social sciences. Also addressed is the history of higher education in mathematics. Carefully illustrated, with annotated bibliographies of sources for each article, The Companion Encyclopedia is a valuable research tool for students and teachers in all branches of mathematics. Contents of Volume 1: •Ancient and Non-Western Traditions •The Western Middle Ages and the Renaissance •Calculus and Mathematical Analysis •Functions, Series, and Methods in Analysis •Logic, Set Theories, and the Foundations of Mathematics •Algebras and Number Theory Contents of Volume 2: •Geometries and Topology •Mechanics and Mechanical Engineering •Physics, Mathematical Physics, and Electrical Engineering •Probability, Statistics, and the Social Sciences •Higher Education and Institutions •Mathematics and Culture •Select Bibliography, Chronology, Biographical Notes, and Index
This book does nothing less than provide an account of the intellectual lineage of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared insoluble by classical means. A major theme of the book is to show how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved. Mathematics instructors, algebraists, and historians of science will find the work a valuable reference.
One of the leading historians in the mathematics field, Victor Katz provides a world view of mathematics, balancing ancient, early modern, and modern history. Egypt and Mesopotamia, Greek Mathematics to the Time of Euclid, Greek Mathematics from Archimedes to Ptolemy, Diophantus to Hypatia, Ancient and Medieval China, Ancient and Medieval India, The Mathematics of Islam, Mathematics in Medieval Europe, Mathematics in the Renaissance, Precalculus in the Seventeenth Century, Calculus in the Seventeenth Century, Analysis in the Eighteenth Century, Probability and Statistics in the Eighteenth Century, Algebra and Number Theory in the Eighteenth Century, Geometry in the Eighteenth Century, Algebra and Number Theory in the Nineteenth Century, Analysis in the Nineteenth Century, Statistics in the Nineteenth Century, Geometry in the Nineteenth Century, Aspects of the Twentieth Century For all readers interested in the history of mathematics.
Key Message: A History of Mathematics, Third Edition, provides a solid background in the history of mathematics, helping readers gain a deeper understanding of mathematical concepts in their historical context. This book's global perspective covers how contributions from Chinese, Indian, and Islamic mathematicians shaped our modern understanding of mathematics. This book also includes discussions of important historical textbooks and primary sources to help readers further understand the development of modern mathematics. Key Topics: Ancient Mathematics: Egypt and Mesopotamia, The Beginnings of Mathematics in Greece, Euclid, Archimedes and Apollonius, Mathematical Methods in Hellenistic Times, The Final Chapter of Greek Mathematics; Medieval Mathematics: Ancient and Medieval China, Ancient and Medieval India, The Mathematics of Islam, Medieval Europe, Mathematics Elsewhere; Early Modern Mathematics: Algebra in the Renaissance, Mathematical Methods in the Renaissance, Geometry, Algebra and Probability in the Seventeenth Century, The Beginnings of Calculus, Newton and Leibniz; Modern Mathematics: Analysis in the Eighteenth Century, Probability and Statistics in the Eighteenth Century, Algebra and Number Theory in the Eighteenth Century, Geometry in the Eighteenth Century, Algebra and Number Theory in the Nineteenth Century, Analysis in the Nineteenth Century, Probability and Statistics in the Nineteenth Century, Geometry in the Nineteenth Century, Aspects of the Twentieth Century Market: For all readers interested in the history of mathematics.
A collection of 13 articles relating to developments in the history of 18th-century exact science, focusing on the writings of such figures as Jean d'Alembert, Leonhard Euler, and Joseph Louis Lagrange. The volume presents their work on the principles of calculus and the theory of motion, and serves to clarify the conceptual foundation of analysis and mechanics in the century following Newton. A detailed historical and critical study of conceptual change involving fundamental links between pure and applied mathematics is provided.
Appropriate for undergraduate and select graduate courses in the history of mathematics, and in the history of science. This edited volume of readings contains more than 130 selections from eminent mathematicians from A `h-mose' to Hilbert and Noether. The chapter introductions comprise a concise history of mathematics based on critical textual analysis and the latest scholarship. Each reading is preceded by a substantial biography of its author.

Best Books