This rigorous, detailed introduction to real analysis presents the fundamentals clearly and includes definitions, theorems and proofs. Mirroring the structure of standard calculus courses makes it especially accessible to university students of mathematics.
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.
The book gives an introduction to \$p\$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. In addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and \$p\$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of \$p\$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.
How do we recognize that the number . 93371663 . . . is actually 2 IoglQ(e + 7r)/2 ? Gauss observed that the number 1. 85407467 . . . is (essentially) a rational value of an elliptic integral-an observation that was critical in the development of nineteenth century analysis. How do we decide that such a number is actually a special value of a familiar function without the tools Gauss had at his disposal, which were, presumably, phenomenal insight and a prodigious memory? Part of the answer, we hope, lies in this volume. This book is structured like a reverse telephone book, or more accurately, like a reverse handbook of special function values. It is a list of just over 100,000 eight-digit real numbers in the interval [0,1) that arise as the first eight digits of special values of familiar functions. It is designed for people, like ourselves, who encounter various numbers computationally and want to know if these numbers have some simple form. This is not a particularly well-defined endeavor-every eight-digit number is rational and this is not interesting. However, the chances of an eight digit number agreeing with a small rational, say with numerator and denominator less than twenty-five, is small. Thus the list is comprised primarily of special function evaluations at various algebraic and simple transcendental values. The exact numbers included are described below. Each entry consists of the first eight digits after the decimal point of the number in question.
An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.
This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.
Long out-of-print volume by a prominent Soviet mathematician presents a thorough examination of the theory of functions of a real variable. Intended for advanced undergraduates and graduate students of mathematics. 1955 and 1960 editions.
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, apart from direct applications to economic theory, his book includes numerous fixed point theorems and applications to functional equations and optimization theory. The book is rigorous, but accessible to those who are relatively new to the ways of real analysis. The formal exposition is accompanied by discussions that describe the basic ideas in relatively heuristic terms, and by more than 1,000 exercises of varying difficulty. This book will be an indispensable resource in courses on mathematics for economists and as a reference for graduate students working on economic theory.
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.
This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.
This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.
This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations, and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with additional examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: Introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible.
Using an extremely clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. The real number system. Differential calculus of functions of one variable. Riemann integral functions of one variable. Integral calculus of real-valued functions. Metric Spaces. For those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.
For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.
This book is an introductory text on real analysis for undergraduate students. The prerequisite for this book is a solid background in freshman calculus in one variable. The intended audience of this book includes undergraduate mathematics majors and students from other disciplines who use real analysis. Since this book is aimed at students who do not have much prior experience with proofs, the pace is slower in earlier chapters than in later chapters. There are hundreds of exercises, and hints for some of them are included.
Assuming minimal background on the part of students, this text gradually develops the principles of basic real analysis and presents the background necessary to understand applications used in such disciplines as statistics, operations research, and engineering. The text presents the first elementary exposition of the gauge integral and offers a clear and thorough introduction to real numbers, developing topics in n-dimensions, and functions of several variables. Detailed treatments of Lagrange multipliers and the Kuhn-Tucker Theorem are also presented. The text concludes with coverage of important topics in abstract analysis, including the Stone-Weierstrass Theorem and the Banach Contraction Principle.