First published in 1545, this cornerstone in the history of mathematics contains the first revelation of the principles for solving cubic and biquadratic equations. T. Richard Witmer's excellent translation from the Latin, adapted to modern mathematical syntax, will appeal to both mathematicians and historians. Foreword by Oystein Ore.
Uncommonly interesting introduction illuminates complexities of higher mathematics while offering a thorough understanding of elementary mathematics. Covers development of complex number system and elementary theories of numbers, polynomials and operations, determinants, matrices, constructions and graphical representations. Several exercises — without solutions.
This undergraduate text teaches students what constitutes an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. 1990 edition.
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Sure-fire techniques of visualizing, dramatizing, and analyzing numbers promise to attract and retain students' attention and understanding. Topics include basic multiplication and division, algebra, word problems, graphs, negative numbers, fractions, many other practical applications of elementary mathematics. 1964 ed. Answers to Problems.
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Practical and applications-oriented, this text explains effective procedures for performing mathematical tasks that arise in many fields, including operations research, engineering, systems sciences, statistics, and economics. Most of the examples and many of the 1,300 problems illustrate techniques, and nearly all of the tables display reference material for procedures. 1978 edition.
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
This refreshingly authoritative look at recreational mathematics illustrates winning strategies that use the methods of algebra, geometry, combinatorics, number theory, graph theory, and other branches of mathematics. Its lucid analyses of the rules and theories of mathematical games include skill-enhancing exercises, plus references, appendixes, and detailed explanations. 1992 edition.
Rich selection of 100 practice problems — with hints and solutions — for students preparing for the William Lowell Putnam and other undergraduate-level mathematical competitions. Features real numbers, differential equations, integrals, polynomials, sets, other topics. Hours of stimulating challenge for math buffs at varying degrees of proficiency. References.
One of the best available works on matrix theory in the context of modern algebra, this text bridges the gap between ordinary undergraduate studies and completely abstract mathematics. 1952 edition.
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
99 puzzles built around the chessboard. Arithmetical and probability problems, chessboard recreations, geometrical puzzles, mathematical amusements and games, more. Solutions.
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Prominent Russian mathematician's concise, well-written exposition considers n-dimensional spaces, linear and bilinear forms, linear transformations, canonical form of an arbitrary linear transformation, and an introduction to tensors. While not designed as an introductory text, the book's well-chosen topics, brevity of presentation, and the author's reputation will recommend it to all students, teachers, and mathematicians working in this sector.

Best Books