Superb introduction to Euclidean algorithm and its consequences, congruences, continued fractions, powers of an integer modulo m, Gaussian integers, Diophantine equations, more. Problems, with answers. Bibliography.
Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.
Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.
Introduction to Number Theory is a classroom-tested, student-friendly text that covers a diverse array of number theory topics, from the ancient Euclidean algorithm for finding the greatest common divisor of two integers to recent developments such as cryptography, the theory of elliptic curves, and the negative solution of Hilbert’s tenth problem. The authors illustrate the connections between number theory and other areas of mathematics, including algebra, analysis, and combinatorics. They also describe applications of number theory to real-world problems, such as congruences in the ISBN system, modular arithmetic and Euler’s theorem in RSA encryption, and quadratic residues in the construction of tournaments. Ideal for a one- or two-semester undergraduate-level course, this Second Edition: Features a more flexible structure that offers a greater range of options for course design Adds new sections on the representations of integers and the Chinese remainder theorem Expands exercise sets to encompass a wider variety of problems, many of which relate number theory to fields outside of mathematics (e.g., music) Provides calculations for computational experimentation using SageMath, a free open-source mathematics software system, as well as Mathematica® and MapleTM, online via a robust, author-maintained website Includes a solutions manual with qualifying course adoption By tackling both fundamental and advanced subjects—and using worked examples, numerous exercises, and popular software packages to ensure a practical understanding—Introduction to Number Theory, Second Edition instills a solid foundation of number theory knowledge.
This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symbols. Index.
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.
This translation of a successfeul Czech book includes more than 1000 problems, which can be used to prepare for the International Mathematical Olympiads or the Putnam exam. Each topic contains brief theoretical discussions that are immediately followed by carefully worked out examples of increasing degrees of difficulty, and by exercises which range from routine to rather challenging problems.
These selected mathematical writings cover the years when the foundations were laid for the theory of numbers, analytic geometry, and the calculus. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
This text for undergraduates "employs a concrete elementary approach, avoiding abstraction until the final chapter."--Back cover.
A basic introduction to electromagnetism, supplying the fundamentals of electrostatics and magnetostatics, in addition to a thorough investigation of electromagnetic theory. Numerous problems and references. Calculus and differential equations required. 1947 edition.
Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
A bibliography of this kind has long been needed. The book is clearly and accurately printed and well arranged." Times Literary Supplement. The scope of the bibliography is economic theory between 1870-1929, the heyday of the neo-classical revolution. The first part of the work is a series of select bibliographies of the different branches of theory. The second part covers a series of bibliographies of the works of key authors. * Bibliography covers American & English publications and German, French and Italian sources. * Subjects covered include: International Trade, Risk, Supply & Demand, Competition & Monopoly, Taxation and Public Expenditure.
Provides basic musicological information about a vast variety of Middle Eastern musical genres within an ethnomusical context.
This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.
Presents techniques for stability analysis based on the probabilistic theory of stability or 'anti-optimization' theory.

Best Books