An introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras reveals that the derived categories are a useful tool in studying tilting processes.
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatories, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
This volume contains selected expository lectures delivered at the annual Maurice Auslander Distinguished Lectures and International Conference over the last several years. Reflecting the diverse landscape of modern representation theory of algebras, the selected articles include: a quick introduction to silting modules; a survey on the first decade of co-t-structures in triangulated categories; a functorial approach to the notion of module; a representation-theoretic approach to recollements in abelian categories; new examples of applications of relative homological algebra; connections between Coxeter groups and quiver representations; and recent progress on limits of approximation theory.
In these notes the author investigates noncommutative smooth projective curves of genus zero, also called exceptional curves. As a main result he shows that each such curve $\mathbb{X}$ admits, up to some weighting, a projective coordinate algebra which is a not necessarily commutative graded factorial domain $R$ in the sense of Chatters and Jordan. Moreover, there is a natural bijection between the points of $\mathbb{X}$ and the homogeneous prime ideals of height one in $R$, and these prime ideals are principal in a strong sense.
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
The latest developments in representation theory with emphasis on the representation type of finite-dimensional algebras.

Best Books