This book introduces the non-specialist reader to the principal ideas, nature and purpose of social network analysis. Social networks operate on many levels, from families up to the level of nations, and play a critical role in determining the way problems are solved, organizations are run, and the degree to which individuals achieve their goals. Social network theory maps these relationships between individual actors. Though relatively new on the scene it has become hugely influential across the social sciences. Assuming no prior knowledge of quantitative sociology, this book presents the key ideas in context through examples and illustrations. Using a structured approach to understanding work in this area, John Scott signposts further reading and online sources so readers can develop their knowledge and skills to become practitioners of this research method. A series of Frequently Asked Questions takes the reader through the main objections raised against social network analysis and answers the various queries that will come up once the reader has worked their way through the book.
This edition is an accessible introduction to the theory and practice of network analysis in the social sciences. Scott outlines the theoretical basis of network analysis and the key techniques for using it as a research tool.
Covers methods for the analysis of social networks and applies them to examples.
Since the publication of Herbert Spencer's Principles of Sociology in 1875, the use of social structure as a defining concept has produced a large body of creative speculations, insights, and intuitions about social life. However, writers in this tradition do not always provide the sorts of formal definitons and propositions that are the building blocks of modern social research. In its broad-ranging examination of the kind of data that form the basis for the systematic study of social structure, Research Methods in Social Network Analysis marks a significant methodological advance in network studies.As used in this volume, social structure refers to a bundle of intuitive natural language ideas and concepts about patterning in social relationships among people. In contrast, social networks is used to refer to a collection of precise analytic and methodological concepts and procedures that facilitate the collection of data and the systematic study of such patterning. Accordingly, the book's five sections are arranged to address analytical problems in a series of logically ordered stages or processes.The major contributors define the fundamental modes by which social structural phenomena are to be represented; how boundaries to a social structure are set; how the relations of a network are measured in terms of structure and content; the ways in which the relational structure of a network affects system actors; and how actors within a social network are clustered into cliques or groups. The chapters in the last section build on solutions to problems proposed in the previous sections. This highly unified approach to research design combined with a representative diversity of viewpoints makes Research Methods in Social Network Analysis a state-of-the-art volume.
This sparkling Handbook offers an unrivalled resource for those engaged in the cutting edge field of social network analysis. Systematically, it introduces readers to the key concepts, substantive topics, central methods and prime debates. Among the specific areas covered are: Network theory Interdisciplinary applications Online networks Corporate networks Lobbying networks Deviant networks Measuring devices Key Methodologies Software applications. The result is a peerless resource for teachers and students which offers a critical survey of the origins, basic issues and major debates. The Handbook provides a one-stop guide that will be used by readers for decades to come.
Models and Methods in Social Network Analysis, first published in 2005, presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.
Designed to walk beginners through core aspects of collecting, visualizing, analyzing, and interpreting social network data, this book will get you up-to-speed on the theory and skills you need to conduct social network analysis. Using simple language and equations, the authors provide expert, clear insight into every step of the research process—including basic maths principles—without making assumptions about what you know. With a particular focus on NetDraw and UCINET, the book introduces relevant software tools step-by-step in an easy to follow way. In addition to the fundamentals of network analysis and the research process, this new Second Edition focuses on: Digital data and social networks like Twitter Statistical models to use in SNA, like QAP and ERGM The structure and centrality of networks Methods for cohesive subgroups/community detection Supported by new chapter exercises, a glossary, and a fully updated companion website, this text is the perfect student-friendly introduction to social network analysis.
In this book, leading methodologists address the issue of how effectively to apply the latest developments in social network analysis to behavioural and social science disciplines. Topics examined include: ways to specify the network contents to be studied; how to select the method for representing network structures; how social network analysis has been used to study interorganizational relations via the resource dependence model; how to use a contact matrix for studying the spread of disease in epidemiology; and how cohesion and structural equivalence network theories relate to studying social influence. The book also offers some statistical models for social support networks.
This first-rate introduction to the study of social networks combines a hands-on manual with an up-to-date review of the latest research and techniques. The authors provide a thorough grounding in the application of the methods of social network analysis. They offer an understanding of the theory of social structures in which social network analysis is grounded, a summary of the concepts needed for dealing with more advanced techniques, and guides for using the primary computer software packages for social network analysis.
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.
Providing a general overview of fundamental theoretical and methodological topics, with coverage in greater depth of selected issues, the text covers various issues in basic network concepts, data collection and network analytical methodology.
Despite the swift spread of social network concepts and their applications and the rising use of network analysis in social science, there is no book that provides a thorough general introduction for the serious reader. Understanding Social Networks fills that gap by explaining the big ideas that underlie the social network phenomenon. Written for those interested in this fast moving area but who are not mathematically inclined, it covers fundamental concepts, then discusses networks and their core themes in increasing order of complexity. Kadushin demystifies the concepts, theories, and findings developed by network experts. He selects material that serves as basic building blocks and examples of best practices that will allow the reader to understand and evaluate new developments as they emerge. Understanding Social Networks will be useful to social scientists who encounter social network research in their reading, students new to the network field, as well as managers, marketers, and others who constantly encounter social networks in their work.
Written by a sociologist, a graph theorist, and a statistician, this title provides social network analysts and students with a solid statistical foundation from which to analyze network data. Clearly demonstrates how graph-theoretic and statistical techniques can be employed to study some important parameters of global social networks. The authors uses real life village-level social networks to illustrate the practicalities, potentials, and constraints of social network analysis ("SNA"). They also offer relevant sampling and inferential aspects of the techniques while dealing with potentially large networks. Intended Audience This supplemental text is ideal for a variety of graduate and doctoral level courses in social network analysis in the social, behavioral, and health sciences
The SAGE Handbook of Social Media Research Methods offers a step-by-step guide to overcoming the challenges inherent in research projects that deal with 'big and broad data', from the formulation of research questions through to the interpretation of findings. The handbook includes chapters on specific social media platforms such as Twitter, Sina Weibo and Instagram, as well as a series of critical chapters. The holistic approach is organised into the following sections: Conceptualising & Designing Social Media Research Collection & Storage Qualitative Approaches to Social Media Data Quantitative Approaches to Social Media Data Diverse Approaches to Social Media Data Analytical Tools Social Media Platforms This handbook is the single most comprehensive resource for any scholar or graduate student embarking on a social media project.
The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network analysis Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network mining Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics
What matters in people’s social lives? What motivates and inspires our society? How do we enact what we know? Since the first edition published in 1980, Content Analysis has helped shape and define the field. In the highly anticipated Fourth Edition, award-winning scholar and author Klaus Krippendorff introduces you to the most current method of analyzing the textual fabric of contemporary society. Students and scholars will learn to treat data not as physical events but as communications that are created and disseminated to be seen, read, interpreted, enacted, and reflected upon according to the meanings they have for their recipients. Interpreting communications as texts in the contexts of their social uses distinguishes content analysis from other empirical methods of inquiry. Organized into three parts, Content Analysis first examines the conceptual aspects of content analysis, then discusses components such as unitizing and sampling, and concludes by showing readers how to trace the analytical paths and apply evaluative techniques. The Fourth Edition has been completely revised to offer you the most current techniques and research on content analysis, including new information on reliability and social media. You will also gain practical advice and experience for teaching academic and commercial researchers how to conduct content analysis.
This edited volume demonstrates the potential of mixed-methods designs for the research of social networks and the utilization of social networks for other research. Mixing methods applies to the combination and integration of qualitative and quantitative methods. In social network research, mixing methods also applies to the combination of structural and actor-oriented approaches. The volume provides readers with methodological concepts to guide mixed-methods network studies with precise research designs and methods to investigate social networks of various sorts. Each chapter describes the research design used and discusses the strengths of the methods for that particular field and for specific outcomes.
Models and Methods in Social Network Analysis presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.
In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on Natural Language Processing (NLP) tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, business intelligence, industry, marketing, and security and defense. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, and social networking.
Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject. This book was originally published as a special issue of the Journal of Technology in Human Services.

Best Books