This book is devoted entirely to the theory of finite fields.
This volume contains the proceedings of the 10th International Congress on Finite Fields and their Applications (Fq 10), held July 11-15, 2011, in Ghent, Belgium. Research on finite fields and their practical applications continues to flourish. This volume's topics, which include finite geometry, finite semifields, bent functions, polynomial theory, designs, and function fields, show the variety of research in this area and prove the tremendous importance of finite field theory.
The Sixth International Conference on Finite Fields and Applications, Fq6, held in the city of Oaxaca, Mexico, from May 21-25, 2001, continued a series of biennial international conferences on finite fields. This volume documents the steadily increasing interest in this topic. Finite fields are an important tool in discrete mathematics and its applications cover algebraic geometry, coding theory, cryptology, design theory, finite geometries, and scientific computation, among others. An important feature is the interplay between theory and applications which has led to many new perspectives in research on finite fields and other areas. This interplay has been emphasized in this series of conferences and certainly was reflected in Fq6. This volume offers up-to-date original research papers by leading experts in the area.
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
This book constitutes the refereed proceedings of the First International Conference on Security Aspects in Information Technology, High-Performance Computing and Networking held in Haldia, India, in October 2011. The 14 full papers presented together with the abstracts of 2 invited lectures were carefully reviewed and selected from 112 sumbissions. The papers address all current aspects in cryptography, security aspects in high performance computing and in networks as well. The papers are divided in topical sections on embedded security; digital rights management; cryptographic protocols; cryptanalysis/side channel attacks; and cipher primitives.
Formal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory). Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns. When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory.